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Preface

Half a century after its formulation, the Standard Model (SM) is by now the
established theory of Electro-Weak (EW) and Strong interactions, the discovery
of the Higgs boson being the most recent of an impressive series of experimental
confirmations. Still the SM is not the fundamental theory of Nature, and not just
because no theory can be regarded as “fundamental” in natural sciences. Concrete
reasons to extend the SM are the existence of gravity, for which no complete
high-energy description is available, and other incontrovertible experimental facts
such as dark matter, neutrino masses and oscillations. Next, there are a number of
theoretical issues based on “Naturalness” considerations, among which the flatness
and homogeneity of the universe that calls for cosmological inflation (which is also
supported by observations), the strong CP problem, and, of course, the Naturalness
problem associated with the Higgs boson mass. This latter problem is the main
motivation for the composite Higgs scenario which we will describe in the present
Notes.

Since it is not fundamental, the SM is an effective theory, i.e. a partial description
of Nature that emerges, under suitable conditions, as an approximation of a more
fundamental theory. In this extended theory, the operators in the SM Lagrangian
should find their origin as an effective description of the more fundamental dynam-
ics and their coefficients, which are just phenomenological input parameters within
the SM, should become calculable providing the explanation of their observed value.

Unveiling the fundamental origin of the SM is the ultimate goal of “Beyond the
SM” (BSM) physics. Actually in this spirit, the letter “B” of the acronym should
better be read as “Behind” rather than “Beyond”, in the sense that we are interested
in departures from the SM predictions only to the extent to which they will guide
us towards the understanding of its fundamental origin. A lack of discovery, i.e. the
exclusion of some hypothetical alternative model, could be equally or even more
helpful in this respect.

The ambitious aim of BSM physics should not obscure the important by-products
that emerge from this line of research in the long path towards its final goal. First,
BSM is of great help in developing a deep understanding of the SM itself, of
the surprising and non-generic features that underlie its current phenomenological
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success, and even to appreciate the true measure of this success. Consider, for
instance, the precise measurements of the EW bosons properties performed at LEP
in the 1990s. It is impossible to explain why they provided such an important
confirmation of the SM without referring to the alternative constructions, perfectly
plausible at that time, which were predicting deviations and were excluded by
these measurements. In this respect, BSM physics is of great pedagogical value.
Second, BSM is essential to design further experimental tests of the SM. It offers
an assessment of which sectors of the theory are less accurately tested, outlining the
experimental directions in which a new physics discovery is more likely to come
or, equivalently, those in which further non-trivial confirmations of the SM could be
found. By purely working within the SM, i.e. without comparing it with alternative
models, one could only measure its parameters with increasing accuracy and check
the statistical compatibility of the overall fit. If the latter program succeeds, we
will have established that the SM is one possible viable description of the data,
but this will not strengthen our belief that it is really the SM, and not something
else, what we are seeing in Nature. Exploring possible alternatives is essential for
the latter purpose. As alternatives one could consider uncontrolled and unmotivated
modifications of the SM Feynman rules, which are unfortunately often employed
in SM studies, or sensible hypotheses resulting from BSM speculations. The third
by-product of BSM physics is that it stimulates theoretical research in quantum
field theory, in a direction that lies in between pure SM phenomenology and
abstract theoretical speculations. Being neither narrowly directed to a single theory
like the former nor detached from phenomenology like the latter, BSM offers a
complementary viewpoint.

In this spirit, we wrote the present Notes with a threefold aim. First, to describe
the composite Higgs scenario in view of its possible relevance as the true extension
of the SM. Namely we will assess, at the best of the present-day theoretical and
experimental understanding, how likely it is that a model of this class might be
actually realized in Nature. Second, we will identify the most promising possible
experimental manifestations of the scenario, outlining relevant directions for BSM
discoveries or SM confirmations. These directions include indirect studies of the
Higgs and the top quark couplings and the direct production of new particles
with specific features. Third, we will carefully explain the tools that underlie the
formulation of the scenario and the study of its implications. Some of these are old
concepts. Some others are recent ideas or modern rephrasing of old ones. We think
that these will find other applications in the future, not only inside but also outside
the composite Higgs domain. The material is presented in a pedagogical fashion.
Basic knowledge of quantum field theory and of the SM is the only prerequisite.

These Notes are organized as follows. The “Introduction” is devoted to the
Naturalness problem and to how it is addressed by a composite Higgs. The next
three chapters provide a first characterization of the phenomenology in the EW,
top and Higgs sectors by only relying on symmetries and power-counting estimates.
This leads to robust but semiquantitative conclusions, which should be confirmed by
concrete models. A class of such models, based on collective breaking, is introduced
in Chap. 5. They serve as benchmarks for the detailed study of the collider and EW
precision phenomenology presented in Chaps. 6 and 7, respectively.
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Chapter 1
Introduction

The Higgs is a scalar boson and all the other known particles of this sort are bound
states of a strongly interacting sector (namely QCD) whose confinement scale is not
far from the particle’s mass. It is thus legitimate to ask if the same could be true
for the Higgs. Clearly QCD cannot be responsible for the formation of the Higgs
particle and a new strongly interacting sector, i.e. the existence of a new strong
force, needs to be postulated if we want to explore this possibility.

The argument above provides a first, heuristic but strong, motivation for the
composite Higgs scenario. However it is not the main one. The main motivation has
to do with the very special role played by the Higgs in the Standard Model (SM),
where it is responsible for the breaking of the Electro-Weak symmetry (EWSB).1

Understanding the origin of the Higgs boson is thus an essential step towards the
microscopic comprehension of the EWSB phenomenon. As we will see in the
following, according to the Naturalness argument this comprehension will either
come from TeV-scale physics or it will never come. The Higgs being a composite
object with a compositeness scale (or geometric size) of TeV order is one of the very
few known options for “Naturally” generating its mass and in turn the EWSB scale.

The present chapter consists of three sections. In the first two sections we will
describe the salient features of the SM, outlining the main structural features that
underlie its phenomenological success, but also its main structural limitation, i.e. the
problem of Naturalness. In the third section we will provide a first qualitative
description of the composite Higgs scenario explaining how it addresses the
Naturalness issue.

1Exhaustive textbooks on the subject are [1–3].

© Springer International Publishing Switzerland 2016
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2 1 Introduction

1.1 The SM Is an Effective Field Theory

A complete description of gravity is missing in the SM and this requires the
latter to be extended. The statement can be made more precise because a partial
description of gravity, obtained by quantizing general relativity in a semiclassical
expansion, is instead unavoidably present in the SM. This quantum theory of
gravity is intrinsically based on perturbation theory, which is perfectly applicable
at low energy but looses its validity for energies above around the Planck mass,
E & 4�MP ' 1019GeV, because the effective gravity coupling strength grows like
gG ' E=MP.2 Some new physics must emerge at MP to replace the perturbative
gravity theory, or much below MP to stop the growth of the coupling strength. If
we denote as “ƒSM” the SM cutoff, i.e. the energy at which non-SM particles and
interactions emerge, we have that ƒSM . MP.

The breakdown of perturbative quantum gravity serves to demonstrate that the
SM, given that it has a finite cutoff, is for sure an effective field theory. This does
not mean that the first layer of Beyond the SM (BSM) physics is necessarily the
one that addresses the quantum gravity issue, nor that it must arise at the Planck
scale. Instead, it might provide the microscopic explanation of other mysteries of
the SM such as the origin of flavor, of neutrino masses or of EWSB. We will see
below that EWSB plays the most important role in the discussion. This explanation
will come to us in the form of predictions of the SM Lagrangian operators, and of
their coefficients, in terms of the more fundamental parameters of the BSM theory.
As depicted in Fig. 1.1, the SM Lagrangian will be computed at the scale ƒSM by

E

MP

MGUT

EW

Strings,
GUT, ...

SM: SU(3)×SU(2)×U(1)
Matter+Gauge+Higgs

L =

=4 operators:
describe what we see

4 operators:
suppressed by

=2 operator:
why

ΛSM

Λ2
SMH2

?

d

d>4

d

mH ΛSM

1 Λd−4
SM/

Fig. 1.1 Pictorial view of the SM as an effective field theory, with its Lagrangian generated at the
scale ƒSM

2The result is obtained by estimating the energy scale where the four-graviton vertex, g2G, reaches
the perturbativity bound of 16�2.
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integrating out the heavy dynamics and retaining in the theory only the light SM
matter fermions, vector and Higgs boson degrees of freedom.3

A technically consistent description of the vector bosons requires gauge
invariance and phenomenological viability requires the gauge group of the SM
SU.3/c�SU.2/L�U.1/Y . But apart from being gauge (and Lorentz) invariant there
is not much we can tell a priori on how the SM effective Lagrangian will look like.
It will consist of an infinite series of local gauge-invariant operators with arbitrary
energy dimension “d”, with coefficients that on dimensional grounds (given that
ŒL� D E4 and ƒSM is the only relevant scale) must be proportional to 1=ƒd�4

SM .
We can then classify the operators by their energy dimension and discuss their
implications.

First we consider the d D 4 operators. They describe almost all what we have
seen in Nature, namely EW and strong interactions, quarks and charged leptons
masses. They define a renormalizable theory and thus, together with the d D 2

operator we will discuss later, they are present in the textbook SM Lagrangian
formulated in the old times when renormalizability was taken as a fundamental
principle.

Several books have been written (see for instance [4–6]) on the extraordinary
phenomenological success of the renormalizable SM Lagrangian in describing the
enormous set of experimental data [7] collected in the past decades. In a nutshell, as
emphasized in [8], most of this success is due to symmetries, namely to “accidental”
symmetries. We call “accidental” a symmetry that arises by accident at a given
order in the operator classification, without being imposed as a principle in the
construction of the theory. The renormalizable (d � 4) SM Lagrangian enjoys exact
(or perturbatively exact) accidental symmetries, namely baryon and lepton family
number, and approximate ones such as the flavor group and custodial symmetry.
For brevity, we focus here on the former symmetries, which have the most striking
implications. Baryon number makes the proton absolutely stable, in accordance with
the experimental limit �p=mp . 10�64 on the proton width over mass ratio. It is
hard to imagine how we could have accounted for the proton being such a narrow
resonance in the absence of a symmetry. Similarly lepton family number forbids
exotic lepton decays such as � ! e� , whose branching ratio is experimentally
bounded at the 10�12 level. From neutrino oscillations we know that the lepton
family number is actually violated, in a way that however nicely fits in the SM
picture as we will see below. Clearly this is connected with the neutrino masses,
which exactly vanish at d D 4 because of the absence, in what we call here “the
SM”, of right-handed neutrino fields.

We now turn to d > 4 operators. Their coefficient is proportional to 1=ƒn
SM,

with n D d � 4 > 0, thus their effect on low-energy observables is suppressed
by .E=ƒSM/

n with respect to renormalizable terms. Current observations are at and

3Other light degrees of freedom might well be present in the low-energy theory, provided they
are coupled weakly enough to have escaped detection. Their presence would not affect the
considerations that follow.
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below the EW scale, E . mEW ' 100GeV, the suppression being effective thus
requires ƒSM � 100GeV. This simple observation could explain why Nature is
approximately well described by a renormalizable theory, without renormalizability
being a principle.

Non-renormalizable operators violate the d D 4 accidental symmetries. Lepton
family number stops being accidental already at d D 5 because of the Weinberg
operator [9]

1

ƒSM
.`LHc/.`c

LHc/ ; (1.1)

where `L denotes the lepton doublet, `c
L its charge conjugate, while H is the Higgs

doublet and Hc D i�2H�. The SU.2/L indices are contracted within the parentheses
and the spinor index between the two terms. A generic lepton flavor structure of
the coefficient is understood. Surprisingly enough, the Weinberg operator is the
unique d D 5 term in the SM Lagrangian. For ƒSM ' 1014 GeV and order one
coefficient it generates neutrino masses of the correct magnitude (m	 � 0:1 eV) and
it can perfectly account for all observed neutrino oscillation phenomena. Baryon
number is instead still accidental at d D 5 and its violation is postponed to d D 6.
We thus perfectly understand, qualitatively, why lepton family violation effects are
“larger”, thus easier to discover, while baryon number violation like proton decay
is still unobserved. At a more quantitative level we should actually remark that
the bounds on proton decay from the d D 6 operators, with order one numerical
coefficients, set a limit ƒSM & 1016 GeV that is in slight tension with what required
by neutrino masses. However few orders of magnitude are not a concern here,
given that there is no reason why the operator coefficient should be of order one.
A suppression of the proton decay operators is actually even expected because they
involve the first family quarks and leptons, whose couplings are reduced already
at the renormalizable level. Namely, it is plausible that the same mechanism that
makes the first-family Yukawa couplings small also reduces proton decay, while
less suppression is expected in the third family entries of the Weinberg operator
coefficient that might drive the generation of the heaviest neutrino mass.

The considerations above suggest an extremely plausible picture for high energy
physics. Maybe the SM cutoff is extremely high; just to set a reference we might
place it at ƒSM � 1015 GeV D MGUT. This choice happens to coincide with the
gauge coupling unification scale, but this doesn’t mean that the new physics at the
cutoff is necessarily a Grand Unified Theory (GUT) (see for instance [10, 11]). On
the contrary, the physics at the cutoff can be very generic in this picture, precisely
because the cutoff is high. Compatibility with low-energy observations is ensured
by the large scale separation ƒSM � mEW. New physics at MGUT is not really one
specific BSM scenario. Given that it makes no requirement on how the physics at
the cutoff should look like and that it does not require new particles that we might
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be capable to observe in the foreseeable future,4 it just coincides with what we
typically call the “SM-only” option for high energy physics. We just rephrased it in
the educated language of effective field theories.

The effective field theory language is essential in order to properly discuss the
limitations of the SM. One of those, which was already mentioned, is the hierarchy
among the Yukawa couplings of the various quark and lepton flavors, which span
few orders of magnitude. This tells us that the new physics at ƒSM cannot actually
be completely generic, given that it must be capable of generating such a hierarchy
in its prediction for the Yukawa’s. This limits the set of theories allowed at the cutoff
but is definitely not a strong constraint. Whatever mechanism we might imagine to
generate flavor hierarchies at ƒSM � MGUT, it will typically not be in contrast with
observations given that the bounds on generic flavor-violating operators are “just” at
the 108 GeV scale. Incorporating dark matter also requires some modification of the
SM picture, but there are several ways in which this could be done without changing
the situation dramatically. Perhaps the most appealing solution from the viewpoint
of the SM is “minimal dark matter” [12], a theory in which all the symmetries which
are needed for phenomenological consistence are accidental. This includes not only
the SM accidental symmetries, but also the additional Z2 symmetry needed to keep
the dark matter particle cosmologically stable. Similar considerations hold for the
strong CP problem, for inflation and all other cosmological shortcomings of the SM.
The latter could be addressed by light and extremely weakly-coupled new particles
or by very heavy ones above the cutoff. In conclusion, none of the above-mentioned
issues is powerful enough to put the basic idea of very heavy new physics scale in
troubles. The only one that is capable to do so is the Naturalness (or Hierarchy)
problem discussed below.5

We have not yet encountered the Naturalness problem in our discussion merely
because we voluntarily ignored, in our classification, the operators with d < 4. The
only such operator in the SM is the Higgs mass term, with d D 2.6 When studying
the d > 4 operators we concluded that their coefficient is suppressed by 1=ƒd�4

SM .
Now we have d D 2 and we are obliged to conclude that the operator is enhanced
by ƒ2

SM, i.e. that the Higgs mass term reads

cƒ2
SMH
H ; (1.2)

with “c” a numerical coefficient. In the SM the Higgs mass term sets the scale of
EWSB and it directly controls the Higgs boson mass. Today we know that mH D
125GeV and thus the mass term is �2 D m2

H=2 D .89GeV/2. But if ƒSM � MGUT,

4This doesn’t make it completely untestable. Purely Majorana neutrino masses would be a strong
indication of its validity while observing a large Dirac component would make it less appealing.
5See [13, 14] for recents essays on the Naturalness problem. The problem was first formulated in
[15–17], however according to the latter references it was K.Wilson who first raised the issue.
6There is also the cosmological constant term, of d D 0. It poses another Naturalness problem that
we will mention later in this chapter.
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what is the reason for this enormous hierarchy? Namely

why
�2

ƒ2
SM

� 10�28 n 1 ?

This is the essence of the Naturalness problem.
Further considerations on the Naturalness problem, its implications and the

possible solution offered by the composite Higgs scenario are postponed to the
next section. However, we can already appreciate here how radically it changes our
expectations on high energy physics. The SM-only picture gets sharply contradicted
by the Naturalness argument since the problem is based on the same logic (i.e.,
dimensional analysis) by which its phenomenological virtues (i.e., the suppression
of d > 4 operators) were established. The new picture is that ƒSM is low,
in the 100GeV to few TeV range, such that a light enough Higgs is obtained
“Naturally”, i.e. in accordance with the estimate in Eq. (1.2). The new physics at
the cutoff must now be highly non-generic, given that it cannot rely any longer
on a large scale suppression of the BSM effects. To start with, baryon and lepton
family number violating operators must come with a highly suppressed coefficient,
which in turn requires baryon and lepton number being imposed as symmetries
rather than emerging by accident. In concrete, the BSM sector must now respect
these symmetries. This can occur either because it inherits them from an even
more fundamental theory or because they are accidental in the BSM theory itself.
Similarly, if ƒSM � TeV flavor violation cannot be generic. Some special structure
must be advocated on the BSM theory, Minimal Flavor Violation (MFV) [18, 19]
being one popular and plausible option. The limits from EW Precision Tests
(EWPT) come next; they also need to be carefully addressed for TeV scale new
physics. On one hand this makes Natural new physics at the TeV scale very
constrained. On the other hand it gives us plenty of indications on how it should,
or it should not, look like.

1.2 A Natural Electroweak Scale

The reader might be unsatisfied with the formulation of the Naturalness problem
we gave so far. All what Eq. (1.2) tells us is that the numerical coefficient “c” that
controls the actual value of the mass term beyond dimensional analysis should be
extremely small, namely c � 10�28 for GUT scale new physics. Rather than pushing
ƒSM down to the TeV scale, where all the above-mentioned constraints apply, one
could consider keeping ƒSM high and try to invent some mechanism to explain
why c is small. After all, we saw that there are other coefficients that require a
suppression in the SM Lagrangian, namely the light flavors Yukawa couplings. One
might argue that it is hard to find a sensible theory where c is small, while this is
much simpler for the Yukawa’s. Or that 28 orders of magnitude are by far much
more than the reduction needed in the Yukawa sector. But this would not be fully
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convincing and would not make full justice to the importance of the Naturalness
problem.

In order to better understand Naturalness we go back to the essential message of
the previous section. The SM is an effective field theory and thus the coefficients
of its operators, which we regard today as fundamental input parameters, should
actually be derived phenomenological parameters, to be computed one day in a more
fundamental BSM theory. Things should work just like for the Fermi theory of weak
interactions, where the Fermi constant GF is a fundamental input parameter that
sets the strength of the weak force. We know however that the true microscopic
description of the weak interactions is the EW theory. The reason why we are sure
about this is that it allows us to predict GF in terms of its microscopic parameters
gW and mW , in a way that agrees with the low-energy determination. What we have
in mind here is merely the standard textbook formula

GF D g2W
4
p
2m2

W

; (1.3)

that allows us to carry on, operatively, the following program. Measure the
microscopic parameters gW and mW at high energy; compute GF; compare it
with low-energy observations.7 Since this program succeeds we can claim that
the microscopic origin of weak interaction is well-understood in terms of the EW
theory. We will now see that the Naturalness problem is an obstruction in repeating
the same program for the Higgs mass and in turn for the EWSB scale.

Imagine knowing the fundamental, “true” theory of EWSB. It will predict the
Higgs mass-term �2 or, which is the same, the physical Higgs mass m2

H D 2�2, in
terms of its own input parameters “ptrue”, by a formula that in full generality reads

m2
H D

Z 1

0

dE
dm2

H

dE
.EI ptrue/ : (1.4)

The integral over energy stands for the contributions to m2
H from all the energy

scales and it extends up to infinity, or up to the very high cutoff of the “true” theory
itself. The integrand could be localized around some specific scale or even sharply
localized by a delta-function at the mass of some specific particle, corresponding to
a tree-level contribution to m2

H. Examples of theories with tree-level contributions
are GUT [10, 11] and Supersymmetric (SUSY)8 models, where mH emerges from
the mass terms of extended scalar sectors. The formula straightforwardly takes into
account radiative contributions, which are the only ones present in the composite
Higgs scenario. Also in SUSY, radiative terms have a significant impact given that
the bounds on the scalar (SUSY and soft) masses that contribute at the tree-level are

7Actually GF is taken as an input parameter in actual calculations because it is better measured
than gW and mW , but this doesn’t affect the conceptual point we are making.
8Standard textbooks and reviews on supersymmetry are in [20–25].
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much milder than those on the colored stops and gluinos that contribute radiatively.
In the language of old-fashioned perturbation theory [2], “E” should be regarded as
the energy of the virtual particles that run into the diagrams through which m2

H is
computed.

Consider now splitting the integral in two regions defined by an intermediate
scale that we take just a bit below the SM cutoff. We have

m2
H D

Z .ƒSM

0

dE
dm2

H

dE
.EI ptrue/C

Z 1

.ƒSM

dE
dm2

H

dE
.EI ptrue/

D ıSMm2
H C ıBSMm2

H ; (1.5)

where ıBSMm2
H is a completely unknown contribution, resulting from energies at

and above ƒSM, while ıSMm2
H comes from virtual quanta below the cutoff, whose

dynamics is by assumption well described by the SM. While there is nothing we can
tell about ıBSMm2

H before we know what the BSM theory is, we can easily estimate
ıSMm2

H by the diagrams in Fig. 1.2, obtaining

ıSMm2
H D

3y2t
8�2

ƒ2
SM �

3g2W
8�2

�
1

4
C 1

8 cos2 �W

�
ƒ2

SM �
3�

8�2
ƒ2

SM ; (1.6)

from, respectively, the top quark, EW bosons and Higgs loops. The idea is that
we know that the BSM theory must reduce to the SM for E < ƒSM. Therefore
no matter what the physics at ƒSM is, its prediction for m2

H must contain the
diagrams in Fig. 1.2 and thus the terms in Eq. (1.6). These terms are obtained by
computing dm2

H=dE from the SM diagrams and integrating it up to ƒSM, which
effectively acts as a hard momentum cutoff. The most relevant contributions come
from the quadratic divergences of the diagrams, thus Eq. (1.6) can be poorly viewed
as the “calculation” of quadratic divergences. Obviously quadratic divergences
are unphysical in quantum field theory. They are canceled by renormalization
and they are even absent in certain regularizations schemes such as dimensional
regularization. However the calculation makes sense, in the spirit above, as an
estimate of the low-energy contributions to m2

H .
The true nature of the Naturalness problem starts now to show up. The full finite

formula for m2
H obtained in the “true” theory receives two contributions that are

completely unrelated since they emerge from separate energy scales. At least one of

H H H H
H H

E E

E

yt yt gW gW

λ

Fig. 1.2 Some representative top, gauge and Higgs boson loop diagrams that contribute to the
Higgs mass
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those, ıSMm2
H , is for sure very large if ƒSM is large. The other one is thus obliged

to be large as well, almost equal and with opposite sign in order to reproduce the
light Higgs mass we observe. A cancellation is taking place between the two terms,
which we quantify by a fine-tuning� of at least

� � ıSMm2
H

m2
H

D 3 y2t
8�2

�
ƒSM

mH

�2
'
�

ƒSM

450GeV

�2
: (1.7)

Only the top loop term in Eq. (1.6) has been retained for the estimate since the top
dominates because of its large Yukawa coupling and because of color multiplicity.
Notice that the one above is just a lower bound on the total amount of cancellation
� needed to adjust mH in the true theory. The high energy contribution ıBSMm2

H ,
on which we have no control, might itself be the result of a cancellation, needed to
arrange for ıBSMm2

H ' �ıSMm2
H . Examples of this situation exist both in SUSY and

in composite Higgs.
The problem is now clear. Even if we were able to write down a theory that

formally predicts the Higgs mass, and even if this theory turned out to be correct
we will never be able to really predict mH if ƒSM is much above the TeV scale,
because of the cancellation. For ƒSM D MGUT, for instance, we have � & 1024.
This means that in the “true” theory formula for mH a 24 digits cancellation is
taking place among two a priori unrelated terms. Each of these terms must thus
be known with at least 24 digits accuracy even if we content ourselves with an
order one estimate of mH. We will never achieve such an accuracy, neither in the
experimental determination of the ptrue “true” theory parameters mH depends on,
nor in the theoretical calculation of the Higgs mass formula. Therefore, we will
never be able to repeat for mH the program we carried on for GF and we will never
be able to claim we understand its microscopic origin and in turn the microscopic
origin of the EWSB scale. A BSM theory with ƒSM D MGUT has, in practice, the
same predictive power on mH as the SM itself, where Eq. (1.4) is replaced by the
much simpler formula

m2
H D m2

H : (1.8)

Namely if such an high-scale BSM theory was realized in Nature mH will remain
forever an input parameter like in the SM. The microscopic origin of mH , if any,
must necessarily come from new physics at the TeV scale, for which the fine-tuning
� in Eq. (1.7) can be reasonably small.

The Higgs mass term is the only parameter of the SM for which such an argument
can be made. Consider for instance writing down the analog of Eq. (1.4) for the
Yukawa couplings and splitting the integral as in Eq. (1.5). The SM contribution
to the Yukawa’s is small even for ƒSM D MGUT, because of two reasons. First,
the Yukawa’s are dimensionless and thus, given that there are no couplings in the
SM with negative energy dimension, they do not receive quadratically divergent
contributions. The quadratic divergence is replaced by a logarithmic one, with a



10 1 Introduction

much milder dependence on ƒSM. Second, the Yukawa’s break the flavor group
of the SM. Therefore there exist selection rules (namely those of MFV) that make
radiative corrections proportional to the Yukawa matrix itself. The Yukawa’s, and
the hierarchies among them, are thus “radiatively stable” in the SM. This marks the
essential difference with the Higgs mass term and implies that their microscopic
origin and the prediction of their values could come at any scale, even at a very high
one. The same holds for all the other SM parameters apart from mH.

The formulation in terms of fine-tuning (1.7) turns the Naturalness problem from
a vague aesthetic issue to a concrete semiquantitative question. Depending on the
actual value of � the Higgs mass can be operatively harder or easier to predict,
making the problem more or less severe. If for instance � � 10, we will not have
much troubles in overcoming a one digit cancellation once we will know and we
will have experimental access to the “true” theory. After some work, sufficiently
accurate predictions and measurements will become available and the program of
predicting mH will succeed. The occurrence of a one digit cancellation will at most
be reported as a curiosity in next generation particle physics books and we will
eventually forget about it. A larger tuning � D 1000 will instead be impossible
to overcome. The experimental exploration of the high energy frontier will tell us,
through Eq. (1.7), what to expect about �. Either by discovering new physics that
addresses the Naturalness problem or by pushing ƒSM higher and higher until no
hope is left to understand the origin of the EWSB scale in the sense specified above.
One way or another, a fundamental result will be obtained.

The discovery of “Unnaturalness” by the non-observation of new physics at the
TeV scale would prevent us from predicting mH as an effective phenomenological
parameter, but this does not necessarily mean that we will never get some control on
its value. The idea of anthropic vacuum selection, first applied by Weinberg to the
cosmological constant problem [26], might help in this respect. The cosmological
constant operator suffers of exactly the same Naturalness problem as the Higgs
mass. Provided we claim we understand gravity well enough to estimate them,
radiative corrections push the cosmological constant to very high values, tens of
orders of magnitude above what we knew it had to be (and was subsequently
observed) in order for galaxies being able to form in the early universe. Weinberg
pointed out that the most plausible value for the cosmological constant should thus
be close to the maximal allowed value for the formation of galaxies because galaxies
are essential for the development of intelligent life. The idea is that if many ground
state configurations are possible in the fundamental theory, typically characterized
by a very large cosmological constant but with a tail in the distribution that extends
up to zero, the largest possible value compatible with galaxies formation, and
thus with the very existence of the observer, will be actually observed. A similar
argument can be made for the Higgs mass (see for instance [27]), however it is
harder in the SM to identify sharply the boundary of the anthropically allowed
region of the parameter space. The anthropic argument basically says that we might
be following a radically wrong path in our search for the fundamental laws of
Nature. The Higgs mass might not be fundamental, but instead dictated by the
environment, and in this case there could be no true mystery about its value. Poorly
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speaking, mH could be like the average temperature on the surface of Earth, of
around 15 ıC. It is the one we observe, rather than the one on the surface of the
Sun, of around 5500 ıC, because of anthropic selection. Plausible or not, the very
existence of such speculative ideas demonstrates the relevance of the Naturalness
problem and the importance of further investigating it. Once again, we see that even
discovering Unnaturalness in mH by excluding Natural new physics at the TeV scale
would be a fundamental result that would change our perspective on the physics of
fundamental interactions.

1.3 Dimensional Transmutation

The composite Higgs scenario offers a simple solution to the problem of Natu-
ralness. Suppose that the Higgs, rather than being a point-like particle as in the
SM, is instead an extended object with a finite geometric size lH . We will make
it so by assuming that it is the bound state of a new strong force characterized
by a confinement scale m� D 1=lH of TeV order. In this new theory the dm2

H=dE
integrand in the Higgs mass formula (1.4), which stands for the contribution of
virtual quanta with a given energy, behaves as follows. Low energy quanta have too
a large wavelength to resolve the Higgs size lH . Therefore the Higgs behaves like an
elementary particle and the integral grows linearly with E like in the SM, resulting
in a quadratic sensitivity to the upper integration limit. However this growth gets
canceled by the finite size effects that start becoming visible when E approaches
and eventually overcomes m�. Exactly like the proton when hit by a virtual photon
of wavelength below the proton radius, the composite Higgs is transparent to
high-energy quanta and the integrand decreases. The linear SM behavior is thus
replaced by a peak at E � m� followed by a steep fall. The Higgs mass generation
phenomenon gets localized at m� D 1=lH and mH is insensitive to much higher
energies. This latter fact is also obvious from the fact that no Higgs particle is present
much above m�. Therefore there exist no Higgs field and no d D 2 Higgs mass term
to worry about.

Clearly it is essential for this to work that the Higgs size, or its inverse that we
associated with a confinement scale, is itself Natural. Namely we must not encounter
a new Naturalness problem when trying to put m� at the TeV scale. The complete
composite Higgs picture, which by the way is common to all the non-SUSY attempts
to address Naturalness, beginning with technicolor [16, 28, 29] (see [30] for a
review), is as follows. The main ingredient is a new “composite sector” that will
eventually deliver the Higgs as a bound state. At least part of the composite sector
dynamics will have to take place in a strongly-coupled non-perturbative regime,
therefore it is appropriate to say that the new sector describes a new strong force.
The composite sector emerges from an even more fundamental theory at a very high
scale ƒUV � TeV, whose precise value will not matter for us given that the whole
point of the construction is precisely to make the EW scale insensitive to it. We
might think, just for definiteness,ƒUV � MGUT.
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At ƒUV the composite sector sits close to a fixed point of its Renormalization
Group (RG) evolution and it is assumed that no strongly relevant deformation exists
around this fixed point. Namely, we assume that no operator in the composite sector
Lagrangian has scaling dimension considerably below 4, which corresponds to the
absence of parameters with strongly positive dimensionality. This is the educated
way to express the absence of unprotected energy scales in the UV theory, which
would reintroduce the Naturalness problem. The SM, with its d D 2 Higgs mass
operator and the corresponding d D 2 parameter �2, is an example of how the
composite sector should not look like. A sector with the features above, realized
in Nature, is low-energy QCD. Low-energy QCD emerges, after integrating out the
EW bosons and the heavy quarks, as a weakly-coupled theory close to the trivial
(free) fixed point.9 No strongly relevant deformation is present because the only
d < 4 operators, the quark mass terms, are protected by the chiral symmetry and
thus they evolve under the RG flow as if they had d ' 4.

The absence of strongly relevant deformations makes the RG flow towards the
IR a “slow” process. Deviations from the fixed point are controlled by the RG
“time” t D logŒƒUV=E� so that the theory can significantly depart from the fixed
point, confine and eventually develop the composite Higgs bound state, only at an
exponentially suppressed scale m� defined by t D logŒƒUV=m��. The time t by
which the RG running ends can be arbitrarily long, depending on how close to the
fixed point we started from at ƒUV. It could be easily of order 10, allowing for
a Natural huge hierarchy between ƒUV and m�. The analogy with QCD is once
again extremely useful to clarify the situation. For 3 light quark flavors and the
running starting at mZ D ƒUV, the habitual formula for the QCD confinement scale
ƒQCD D m�, can be expressed as

logŒƒUV=m�� D 1

18

�
4�

gS

�2
: (1.9)

The loop expansion parameter g2S=16�
2, with gS evaluated at ƒUV D mZ controls

the departure of the UV theory from the free fixed point. This is why its inverse
sets the total RG running time and hence the hierarchy between ƒUV and m�.
This mechanism, by which a scale m� is generated through the running without
dimensionful parameters but only d D 0 couplings being present in the UV theory
is called “dimensional transmutation” in QCD textbooks. The name is appropriate
also in the more general context we have in mind here, where the absence of
relevant deformations corresponds to the absence of dimensionful parameters in the
microscopic theory.

The second ingredient we need for a potentially realistic theory is one extra “ele-
mentary” sector that contains all those particles that we know, by phenomenology,

9A theory with nearly massless u, d and s quarks, and all the others with masses at the EW scale
� mZ , at which gS � 4�=10 well within the perturbative regime, is what we actually have in mind
for our analogy.
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can not be composite at the TeV scale unlike the Higgs.10 Those are basically all
the other SM particles, the only possible exception being, as we will see, the right-
handed component of the top quark. The elementary sector is a weakly-coupled
gauge theory with the gauge group of the SM and its particle content aside from
the Higgs. The most relevant operators in its Lagrangian, namely those that are not
suppressed by 1=ƒn

UV, are thus just the ordinary d D 4 SM gauge and fermion
kinetic terms. Obviously no Yukawa couplings are present since there is no Higgs.
The phenomenological need of describing the SM vector bosons as elementary
gauge fields obliges the whole theory, including the composite sector, to respect the
SM gauge symmetry. Namely, the composite sector will be characterized by an exact
symmetry group “G” containing one SU.2/L�U.1/Y subgroup. The elementary W�

and B� fields make the latter subgroup local by the habitual gauging procedure.
This amounts to couple them to the global SU.2/L�U.1/Y conserved current of
the composite sector, giving rise to one sure communication channel between the
elementary and the composite sectors.

In the analogy with QCD, the elementary sector consists of the photon field and
the light leptons. The global group G is the chiral symmetry SU.3/L�SU.3/R and the
photon gauges its U.1/e.m. subgroup. The major difference between our construction
and QCD is, in this respect, the fact that the chiral group is explicitly broken by the
quark masses while our composite sector is exactly invariant under G . The latter
assumption could actually be relaxed, allowing for some amount of breaking inside
the composite sector. However this would not introduce radically new phenomena,
therefore we will ignore this possibility in the following and assume that the explicit
breaking of G is entirely due to the presence of the elementary sector. This breaking
gets transmitted to the composite sector by the elementary/composite interaction
Lint. The same would happen in QCD if we set the light quark masses to zero. The
breaking of the chiral group would solely come from the coupling of the elementary
photon.

In obvious analogy with QCD, the global group G will generically be broken
spontaneously to a subgroup H at the confinement scale m�, delivering exactly
massless Nambu—Goldstone Bosons (NGB) in the G=H coset. In the scenario
described in these Notes, the Higgs is one of those Goldstone bosons. It acquires
a mass and a potential, triggering EWSB, through the explicit breaking of the
Goldstone symmetry group G induced by the elementary sector. The Higgs being a
NGB, or more precisely a pseudo NGB since the Goldstone symmetry is explicitly
broken, is essential for the composite Higgs scenario having a chance to be realistic
and marks the difference with the old composite Higgs constructions [15, 17] (see
for instance [31] for an even earlier attempt) where the Higgs was emerging as a
generic bound state of the composite sector. In the latter case, the Higgs mass would
be set directly by the confinement scale m�, which we would thus be obliged to take
in the 100GeV range rather than at the TeV or multi-TeV scale. But a large number

10Those particles might be “partially composite”, a concept that we will introduce and discuss
extensively in these Notes.
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of bound states, called “resonances”, are expected at m�, very much like plenty
of hadrons emerge from the QCD confinement at ƒQCD. None of such particles is
observed at 100GeV, therefore m� must be at the TeV and mH much below that. This
is Naturally the case for a NGB Higgs, whose mass is controlled by the explicit
breaking of the Goldstone symmetry, provided of course the breaking effects are
small. But G breaking comes from the elementary sector and it is communicated to
the composite one by the elementary/composite interactions Lint. Keeping it small
thus requires Lint being a weak perturbation of the composite sector dynamics. This
condition is also crucial in order to ensure that the presence of the elementary
sector does not destabilize the hierarchy among m� and ƒUV induced by the
composite sector dynamics, invalidating our solution of the Naturalness problem.
The elementary sector being a weak perturbation of the composite one at all scales
between ƒUV and m� requires that no strongly relevant operator, compatible with
symmetries and selection rules, should be present in Lint. This is indeed the case
in QCD and it is why the electromagnetic interactions are small corrections to the
hadron dynamics. The approximate Goldstone symmetry can also explain, at the
price of a mild tuning, why the composite Higgs particle not only is light, but also
it couples in approximately the same way as if it were elementary as in the SM.
This comes, as we will see in the next chapter, from the mechanism of “vacuum
misalignment” discovered in [32–34].

In summary, the composite Higgs setup is defined by the three basic elements
depicted in Fig. 1.3. We have a composite sector, an elementary one and an
interaction Lint between the two, which transmits to the composite sector the explicit
breaking of G . Characterizing the features they must possess in order to produce a
potentially realistic theory is the purpose of the present Notes. The reader should be
aware the she/he will not find here any attempt to formulate a microscopic UV real-
ization of the composite Higgs scenario. It is relatively easy, and was done already
in the original literature [32–34], to produce QCD-like models, weakly coupled at
ƒUV and thus described by “technigluons” and “techniquarks” constituents at that
scale, with a G ! H symmetry breaking pattern suited to deliver a NGB Higgs.
These models typically result in a phenomenologically satisfactory description of
the EW bosons and Higgs dynamics. Very few attempts have been made [35–39]
to extend these constructions to the fermionic sector. Here the challenge is to find
a microscopic realization of the “partial compositeness” hypothesis [40] that, as
we will see, requires a peculiar structure of the elementary/composite fermionic
interactions. The best examples we have of composite Higgs models with partial
fermion compositeness are five-dimensional gauge theories on truncated anti-de
Sitter space [4, 41, 42], which however are not UV-complete. Their completion

Fig. 1.3 The basic structure
of the composite Higgs
scenario
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might not be an asymptotically-free four-dimensional gauge theory, it could instead
be some other kind of construction flowing towards a strongly-coupled UV fixed
point. Given the extra dimensional nature of these model a string theory completion,
possibly dual to a strongly-coupled theory in four dimensions, could be also
envisaged. Our viewpoint on the UV completion of the composite Higgs scenario is
the following. What we can definitely do is to identify and spell out as precisely
as possible the required assumptions on the UV dynamics and, by the power
of symmetries, selection rules and effective field theory techniques, study their
compatibility with current observations and make prediction for future experimental
searches. Which is by the way how we would proceed even if we knew the
microscopic theory given the difficulty of performing explicit calculations in the
strong coupling regime. If, as a result of this effort, something that resembles the
composite Higgs is discovered, we would be sure that microscopic theory with
the required features exists and finding one will become a priority. If conversely
the composite Higgs scenario will be found to be experimentally excluded, or too
much tuned to be relevant, finding a UV completion will still remain an interesting
theoretical quantum field theory question, but with no direct phenomenological
relevance.
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Chapter 2
Goldstone Boson Higgs

This chapter provides a first illustration of the composite Higgs scenario and a
first characterization of its phenomenology. In particular of those aspects of the
phenomenology that robustly follow from the Nambu—Goldstone Boson (NGB)
nature of the Higgs in a model-independent way. Interestingly enough, this includes
a specific pattern of Higgs coupling modifications with respect to the SM predic-
tions. The basic concept behind the formulation of the composite Higgs scenarios
is “vacuum misalignment”, a mechanism by which the composite Higgs boson can
effectively behave as an elementary one. This concept is explained in Sect. 2.1 and
further illustrated in Sect. 2.2 with the help of two simple examples. Section 2.3 is
more technical. It reviews the Callan–Coleman–Wess–Zumino (CCWZ) approach
to spontaneously broken symmetries, an essential tool for the study of the composite
Higgs scenario. Finally, in Sect. 2.4 we explain the concept of partial fermion
compositeness, which is how the elementary SM fermions are assumed to couple
with the composite sector in our construction.

2.1 Vacuum Misalignment

We now consider, in addition to the SM fermions and gauge fields, a new sector
endowed with a global Lie group of symmetries G . This is the “composite sector”,
in the language of the previous chapter. Since we want our setup to address the
Naturalness problem by the mechanism of dimensional transmutation we imagine
dealing with a strongly-interacting sector, conceptually similar to a QCD-like
confining theory. However the forthcoming discussion applies to weakly-coupled
theories as well and indeed illustrative weakly-coupled examples will be worked
out in the following section. We assume that the vacuum state of the composite
sector, when the latter is considered in isolation, is only invariant under a subgroup
H � G leading to G ! H spontaneous breaking and thus to the appearance of
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18 2 Goldstone Boson Higgs

massless NGB’s in the coset G=H . The subgroup H is assumed to contain the EW
group GEW D SU.2/L � U.1/Y 	 H and G is assumed to be large enough for at
least one Higgs doublet to be present in the coset. In order to study this system we
must first of all introduce a reference system in the Lie algebra of G by choosing
a basis of linearly independent generators TA and splitting them into “unbroken”
(A D a D 1; : : : ; dimŒH �) and “broken” (A D Oa D O1; : : : ; dimŒG=H �) sets as

fTAg D fTa; OT Oag : (2.1)

The set fTag generates the Lie algebra of the subgroup H . It is also convenient
to introduce a reference vacuum field configuration

#„
F , that describes one of the

degenerate vacua of the composite sector. It is chosen to satisfy

Ta #„F D 0 ; OT Oa #„F ¤ 0 : (2.2)

To be precise, what we mean with the second equation is that f OT Oa #„F g forms a linearly
independent (over the reals) set of vectors.

Notice that Eq. (2.1), and consequently Eq. (2.2), is merely a conventional choice
of the reference system in the G algebra. From the viewpoint of the composite
sector alone, for which G is an exact symmetry, there is no preferred system. Any
embedding of H in G , obtained by acting on Eq. (2.1) with G elements, is completely
equivalent.1 However, G is eventually broken in our construction by identifying
some of its generators with those of the EW group. In view of this breaking, it
is convenient to choose the reference system in such a way that the embedding of
H contains all the GEW generators. Namely, the SM gauge fields W1;2;3

� and B�, that
gauge the GEW group, will couple to some of the global currents associated with
the fTag’s and not to the f OT Oag’s. This is our definition of the fTag set and of the
reference vacuum

#„
F , it does not entail any assumption on the G ! H symmetry

breaking pattern.
As well known, and reviewed in Sect. 2.3, the NGB fields are local transforma-

tions in the direction of the f OT Oag generators and correspond to the ansatz

#„
ˆ.x/ D ei � Oa.x/ OTOa #„

F ; (2.3)

in the space of the field operators
#„
ˆ of the theory. Among the �Oa fields we identify

the four real components of one Higgs doublet, plus possibly other scalars of an
enlarged Higgs sector. The Higgs field taking a Vacuum Expectation Value (VEV)
eventually breaks GEW down to the electromagnetic group exactly like in the SM. To
illustrate how this works, let us first consider the composite sector in isolation and

1This is clearly not the case when H is embeddable in multiple inequivalent ways in G , namely
when different choices of the H algebra generators are not all related by inner automorphisms.
Which inequivalent embedding is selected is in this case a dynamical question and depends on the
details of the underlying theory.
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Fig. 2.1 A geometrical
illustration of EWSB through
vacuum misalignment, in the
case of the spatial rotations
group G D SO.3/ with
H D SO.2/. The SO.2/
breaking from vacuum
misalignment is proportional
to the projection of EF on the
SO.2/ plane, v D f sinh�i

ignore the G-breaking perturbations that arise from the coupling with the SM gauge
fields.2 In this case the � fields are exact NGB’s, therefore they have no potential and
their VEV’s h�Oai are completely arbitrary. Moreover the VEV’s are unobservable
because any constant � configuration merely corresponds to one equivalent vacuum
obtained by acting on

#„
F with the G transformation expŒ�ih�Oai OT Oa�. Technically, we

will be able to get rid of any h�Oai by a suitable redefinition of the � fields that induces
the transformation

#„
ˆ ! expŒ�ih�Oai OT Oa� #„ˆ. In this way it is possible to set, in full

generality, h� Oai D 0. The concept that the composite Higgs VEV is unobservable in
the absence of explicit breaking of G is often useful in the study of composite Higgs
theories.

When we take G-breaking into account and � becomes a pseudo NGB (pNGB)
the situation changes. First of all, � develops a potential and its VEV is not arbitrary
anymore. Moreover, h�i becomes observable as it can not be set to zero by an
exact symmetry transformation. Its physical effect is to break GEW, embedded in
H , giving rise to EWSB. Geometrically, as depicted in Fig. 2.1, h�i measures the
angle by which the vacuum is misaligned with respect to the reference vector

#„
F ,

which we have chosen to be orthogonal to the plane of H 
 GEW. The convenience
of this choice should now be clear: the field � defined by Eq. (2.3) behaves exactly
like the SM Higgs field in the sense that its non-vanishing VEV triggers EWSB.
More precisely, we expect all the EWSB effects such as the SM particle masses to
be controlled by the projection of

#„
F on the GEW plane, i.e. we expect the EWSB

scale to be set by v D f sinh�i where f D j #„F j is the scale of G ! H spontaneous
breaking. This expectation is confirmed by the examples that follow.

The actual value of h�i depends on the details of the composite sector and on
those of the symmetry-breaking perturbations. It can be obtained, in each given
explicit model, by minimizing the pNGB potential. In the absence of some special
mechanism or of an ad-hoc cancellation, we generically expect a minimum for
h�i � 1. Namely, the vacuum does not generically point in a direction close to
#„
F and the EW symmetry is maximally broken, i.e. v � f . If this is the case our
setup is merely a non-minimal technicolor model where we enlarged the group H

2The couplings with the SM fermions also break G explicitly, as we will see in Sect. 2.4.
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to contain also the broken SM generators and not only the electromagnetic U.1/.
But if these additional generators are broken with maximal strength v � f we
will find no qualitative difference with the minimal technicolor case, aside from
the presence of additional pNGB associated with the new broken generators. The
composite Higgs construction becomes interesting, and different from technicolor,
only if the misalignment angle is small, h�i � 1, such that a gap is generated among
f and the EWSB scale v. This condition is conveniently expressed as

 � v2

f 2
D sin2h�i � 1 ; (2.4)

in terms of the important parameter  which appears ubiquitously in the study
of composite Higgs. The limit  ! 0, at fixed v, corresponds to decoupling the
composite sector from the low-energy physics by sending to infinity its typical scale
f . In this limit, only the Goldstone boson Higgs remains in the spectrum while all
the other bound states decouple. The theory, as shown explicitly in the examples
that follow, systematically reduces to the SM for  ! 0 and the composite Higgs
becomes effectively elementary. Unlike technicolor, composite Higgs theories are
endowed with one adjustable parameter  that controls all the departures from the
Standard Higgs model. The experimental confirmations of the SM, in particular its
successful description of EW precision physics, can be systematically recovered by
a small enough . This mechanism is called “vacuum misalignment” [1–3].

However, we generically expect a large misalignment angle, h�i � 1, and
therefore  � 1. Two attitudes are possible towards the problem of obtaining a small
enough . The first one is to assume a certain degree of accidental cancellation,
or fine-tuning, taking place in the scalar potential ensuring  � 1. Though not
completely satisfactory, this might well be the correct explanation as long as not too
a small , not much smaller than around 0:1, is required. Moderate cancellations, of
the order of one part into ten, are acceptable from the viewpoint of Naturalness, or at
least of its formulation in terms of fine-tuning we insisted on in the previous chapter.
A microscopic model of EWSB, which explains the huge Planck (or GUT) to weak
hierarchy and complies with all the precise tests of the SM at the only price of a 10%
tuning of a single parameter would definitely be an extremely plausible possibility.
The second approach to the small  problem is to try to design some specific
mechanism which leads to a small h�i, not by tuning but rather through a structural
cancellation taking place in the potential. One incarnation of this idea is provided by
the so-called “little Higgs” program [4, 5] (for a review see [6, 7]), which foresees a
parametric reduction of the Higgs mass term in the potential relative to the quartic,
leading to a naturally small VEV. Unfortunately this is not achieved by reducing
the Higgs mass term, but by enlarging the quartic, leading to a serious tension
with the observed Higgs mass. Furthermore the proposed constructions are rather
complicated and rely on seemingly artificial model-building. In comparison, the
explanation based on some degree of unnatural tuning seems more plausible. We
will not elaborate any further on these ideas, nevertheless they could be the right
starting point towards the construction of a more Natural “self-tuned” version of the
composite Higgs scenario.
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2.2 Two Simple Examples

For a concrete illustration of the general idea we discuss two examples, formulated
as renormalizable and weakly-coupled scalar theories or, as we will sometimes
denote them in what follows, “linear �-models”. The first one is a toy model with
SO.3/ ! SO.2/ spontaneous breaking, which provides a composite realization of
the Abelian Higgs model. The second example, based on the breaking SO.5/ !
SO.4/, is instead more realistic and leads to a SM-like Higgs theory of EWSB.

2.2.1 The Abelian Composite Higgs Model

We consider a triplet
#„
ˆ of real scalar fields, described by the Lagrangian

LC D 1

2
@�

#„
ˆ

T
@�

#„
ˆ � g2�

8

�
#„
ˆ

T #„
ˆ � f 2

�2
: (2.5)

In spite of being just a simple scalar theory, which we will study in the perturbative
weakly-coupled regime g� < 4� , we interpret it here as the strongly-interacting
composite sector we described in the previous chapter. The theory is invariant under
SO.3/ transformations acting on

#„
ˆ as

#„
ˆ ! g  #„ˆ ; g D ei˛ATA 2 SO.3/ ; (2.6)

where the SO.3/ generators, normalized to TrŒTATB� D ıAB, can be conveniently
chosen as TA D fT; OTig

T D 1p
2

2
4 0 �i 0

i 0 0

0 0 0

3
5 ; OTi D

8<
:
1p
2

2
4 0 0 �i
0 0 0

i 0 0

3
5 ;

1p
2

2
4 0 0 0

0 0 �i
0 i 0

3
5
9=
; ;

(2.7)

with i D 1; 2. Geometrically, the three generators correspond to rotations in the 1–2,
1–3 and 2–3 planes.

The field
#„
ˆ acquires a non vanishing VEV breaking SO.3/ to the SO.2/

subgroup of rotations around h #„ˆi. The tree-level minimization condition reads
h #„ˆTih #„ˆi D f 2, so that the manifold of equivalent vacua is the two-sphere depicted
in Fig. 2.1. Given the basis (2.7) we adopted for the generators, the representative
vacuum, selected by the condition in Eq. (2.2), reads

#„
F D

2
4 00

f

3
5 : (2.8)
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In order to study the fluctuations around the vacuum it is convenient to perform a
field redefinition and to trade the three Ê components for one radial coordinate �
plus two “angular” variables…1;2 (the Goldstone fields) describing the fluctuations
around the broken generators as in Eq. (2.3). We write

#„
ˆ D ei

p

2
f …i.x/ OTi

2
4 0

0

f C �.x/

3
5 ; (2.9)

where the normalization factor has been chosen (see below) to obtain a canonical
kinetic term for the Goldstone boson fields…i. The exponential matrix in the above
equation is a space-time dependent element of SO.3/ which we call the “Goldstone
matrix” U Œ…�. It can be defined for any G ! H breaking and it ubiquitously
appears in composite Higgs.

The Goldstone matrix can be computed explicitly in this simple case and it is
given by

U Œ…� D ei
p

2
f …i.x/ OTi D

"
� � �1 � cos …f

� #„
…

#„
…T

…2 sin …
f

#„
…
…

� sin …
f

#„
…T

…
cos …f

#
; (2.10)

where … D
p

#„
…T #„…. Actually, the expression above is more general and holds for

any SO.N/ ! SO.N � 1/ breaking provided the N � 1 broken generators are
chosen, in analogy with Eq. (2.7), to have one non-vanishing entry in the last line
and column. The field redefinition (2.9) becomes

#„
ˆ D .f C �/

"
sin …

f

#„
…
…

cos …f

#
: (2.11)

We see that the new variables furnish a full one-to-one parametrization of the field
space, aside from the singular point

#„
ˆ D 0, provided f C � is taken to be positive

and the Goldstones are restricted to the region … 2 Œ0; �f /. By substituting in the
Lagrangian we straightforwardly obtain

LC D 1

2
@��@

�� � .g�
f /2

2
�2 � g2

�

f

2
�3 � g2

�

8
�4 (2.12)

C1
2

�
1C �

f

�2 � f 2

…2
sin2

…

f
@�

#„

…T@�
#„

…C f 2

4…4

�
…2

f 2
� sin2

…

f

�
@�…

2@�…2

	
:

Many interesting and generic properties of the composite Higgs scenario are
well illustrated by the expression above. First, by Taylor-expanding around … D 0

(which is a perfectly regular point) we see that the Lagrangian contains an infinite set
of local interactions involving an arbitrary number of Goldstone fields but only two
derivatives. Each Goldstone leg insertion is weighted by the Goldstone symmetry



2.2 Two Simple Examples 23

breaking scale f . This is simply because
#„
… enters in the Goldstone matrix as

#„
…=f .

In analogy with the theory of QCD pions, where the role of f is played by the
pion decay constant f� , we will sometimes refer to f as the “Higgs decay constant”.
In agreement with the Goldstone theorem the …’s describe two massless bosons
associated with the two broken generators OT1;2.

The � field has instead a mass

m� D g�f : (2.13)

In analogy with a strongly coupled sector, which we would like to mimic by our
example, the � particle is called a “resonance”. We generically call a resonance
any particle that emerges from the composite sector aside from the Goldstone
bosons. In the analogy, the mass m� corresponds to the strong sector’s confinement
scale, conceptually similar to the QCD scale ƒQCD. The parameter g� controls the
interactions in our Lagrangian. It is thus interpreted as an effective low-energy
coupling of the composite sector. In Chap. 3 we will see that in a genuine strong
theory g� could easily be of order 4� , outside the perturbative regime, but it could
also be parametrically reduced in the case of a confining gauge group with a large
number of colors.

We now inspect the symmetries of the Lagrangian in the non-linear form of
Eq. (2.12). We immediately recognize the presence of an SO.2/ group under which
#„
… forms a doublet and transforms as

#„
…! ei˛�2 #„…: (2.14)

We call this a “linearly realized” symmetry as it acts in a linear and homogeneous
way on the field variables. We can switch to the complex notation by defining

H D …1 � i…2p
2

; (2.15)

which we identify with the Higgs field, with unit charge under U.1/ D SO.2/, of
the Abelian Higgs model we are constructing. Obviously, the linearly realized SO.2/
invariance follows from one of the symmetries of the original Lagrangian (2.5). It
is indeed immediate to see that it induces an SO.3/ rotation along the unbroken
generator T

#„
…! ei˛�2 #„… , #„

ˆ! ei
p
2˛T #„ˆ : (2.16)

This correspondence guarantees the invariance of the Lagrangian in Eq. (2.12),
which is a mere rewriting of the original one.

For the two broken generators OTi identical considerations hold. Therefore, even
if it would have been hard to tell at a first sight, Eq. (2.12) must have other
symmetries. It is not hard to work out, at the infinitesimal level, the Goldstone field
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transformations that induce rotations of
#„
ˆ along the broken generators. These read

#„
…! #„

…C… cot
…

f
#„˛ C

�
f

…
� cot

…

f

��
#„˛ T #„…

� #„
…

…
; (2.17)

m
#„
ˆ! #„

ˆC i˛i OTi Ê :

As for the unbroken U.1/, the correspondence ensures that the transformations
above are symmetries of the Lagrangian in Eq. (2.12). This can also be directly
verified by a lengthy but straightforward calculation. Differently from those asso-
ciated with the unbroken U.1/, the broken transformations act non-linearly on the
Goldstone field variables … and thus they are said to be “non-linearly realized”.
Moreover they also act non-homogeneously, in the sense that the zero field
configuration is transformed into one with constant

#„
… fields, i.e.

#„
0 ! f #„˛ .

Conversely, any constant field configuration, such as the one that defines a generic
vacuum h #„…i, can be transformed into the trivial vacuum h #„…i D 0. This implies
that, as explained on general grounds in the previous section, the composite Higgs
VEV has no physical effect in the absence of an explicit breaking of the Goldstone
symmetry. Clearly for the argument above being conclusive we would need the finite
form of the transformation, which however is too involved to be written explicitly.
An implicit but compact form is reported in the following section.

Now that a NGB Higgs scalar has been obtained the last ingredient to construct
the Abelian Higgs model is a U.1/ gauge field. Rather intuitively it is introduced
by gauging the unbroken U.1/ subgroup, namely by replacing in the original
Lagrangian

@�
#„
ˆ ! D�

#„
ˆ D

�
@� � i

p
2e A�T

�
#„
ˆ ; (2.18)

where A� is a U.1/ gauge field with canonical kinetic term. In the language of
Chap. 1, A� is an elementary sector field and its gauge couplings with ˆ are
elementary/composite interactions. The gauging, since it selects one generator
among three, breaks SO.3/ explicitly to SO.2/. The composite Higgs has now
became a pNGB. One might wonder whether the choice of the embedding in SO.3/
of the SO.2/ gauge group, which we take exactly aligned with the generator T, hides
some dynamical assumption. In view of this possible confusion we stressed in the
previous section that the choice of the generators of the G group, performed in such a
way that the gauged directions are exclusively in H , is completely conventional and
does not rely on any assumption. In the present example this is immediately verified.
Suppose we had started from a generic embedding of the gauge group, defined by
an arbitrary (but normalized) linear combination of generators T . In full generality,
T can be rotated to T by an SO.3/ transformation, namely it can be expressed as
T D gTgT . In this case our prescription for the choice of the reference system in
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the algebra would have been to work with rotated generators, obtained by acting
with g on Eq (2.7). However this would not have changed the results because g can
be eliminated by a field redefinition

#„
ˆ ! g

#„
ˆ and thus it has no physical effect.

Therefore the choice T D T in Eq. (2.18) is completely general.
We can finally write down our Abelian composite Higgs theory. The only effect

of the gauging is to turn ordinary derivatives into covariant ones in Eq. (2.12), with

D�
#„
… D �@� � i e A��2

� #„
…: (2.19)

By turning to the complex field notation the terms of the Lagrangian involving the
Higgs become

1

2

�
1C �

f

�2 " f 2

jHj2 sin2
p
2jHj
f

D�H
D�H (2.20)

C f 2

4jHj4
 
2
jHj2
f 2
� sin2

p
2jHj
f

! �
@�jHj2

�2#
;

while the � field Lagrangian remains unchanged. The covariant derivative in the
previous equation is just the usual one

D�H D @�H � i e A�H : (2.21)

Now that the Goldstone symmetry has been broken by the gauging two new
important features emerge. First, the emergence of a Higgs potential is no longer
forbidden, as it would be in the unbroken case because of the non-linearly realized
symmetry of Eq. (2.17). Even if the potential still vanishes in our tree-level
Lagrangian, it is radiatively generated by the gauge field loops, which transmit to the
Higgs sector the Goldstone symmetry breaking. This potential, whose generation is
not particularly enlightening and not worth discussing in this example, eventually
gives a VEV to the composite Higgs field. Second, the Higgs VEV becomes
observable and the breaking of the U.1/ symmetry can take place. By setting the
Higgs to its VEV

H D hHi � Vp
2
; (2.22)

the first term in the square bracket of Eq. (2.21) gives to the gauge field a mass

mA D ef sin
V

f
� e v : (2.23)

In the second equality of the above equation we have defined the scale v of U.1/
symmetry breaking in analogy with the ordinary elementary Abelian Higgs mass
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formula. In the latter case the scale v is directly provided by the Higgs field VEV
while in the composite case

v D f sin
V

f
)  D v2

f 2
D sin2

V

f
: (2.24)

The situation is thus precisely the one depicted in Fig. 2.1, where the symmetry
breaking scale is provided by the projection of the vacuum configuration on the
plane associated with the unbroken generator.

2.2.2 The Minimal Composite Higgs Model

It is not hard to turn our toy example into a model of EWSB. To this end we must
enlarge the unbroken group in a way that it contains GEW. Furthermore we need at
least four spontaneously broken generators giving rise to one complex doublet of
NGB Higgs fields. One possibility is to consider SO.5/ spontaneously broken to an
SO.4/ subgroup. As explained in section “The SO.4/ Algebra” in the Appendix,
SO.4/ is locally isomorphic to the chiral group SU.2/L�SU.2/R. We interpret
the SU.2/L factor as the SM one and we identify the hypercharge with the third
SU.2/R generator, Y D t3R. The 10 SO.5/ generators acting on the 5 representation,
normalized as TrŒTATB� D ıAB, are conveniently taken to be TA D fTa; OTig where

Ta D



T˛L D
�

t˛L 0
0 0

	
; T˛R D

�
t˛R 0
0 0

	�
;

� OTi
�

IJ
D � ip

2

�
ıi

Iı
5
J � ıi

Jı
5
I

�
: (2.25)

The 6 first generators Ta span the SO.4/ sub-algebra and are written in
SU.2/L�SU.2/R notation in terms of the 4�4 generators t˛L;R defined in section “The

SO.4/ Algebra” in the Appendix. The remaining four, OTi, are instead broken and
the associated NGB fields provide the two complex Higgs doublet components. As
shown below the Goldstones transform in the 4 D .2; 2/ of the unbroken SO.4/
and thus they have the correct SM quantum numbers to be identified with the Higgs
field by applying Eq. (2.156) in section “The SO.4/ Algebra” in the Appendix.

The composite sector Lagrangian is again the one in Eq. (2.5), where
#„
ˆ is

now an SO.5/ fiveplet. The manifold of equivalent vacua is the 4-sphere and the
representative vacuum configuration points along the fifth component. In complete
analogy with the Abelian model example, the five real components of

#„
ˆ are

conveniently parametrized as

#„
ˆ D ei

p

2
f …i.x/ OTi

� #„
0

f C �.x/
	
D .f C �/

"
sin …

f

#„
…
…

cos …f

#
; (2.26)
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in terms of the resonance field � and of four NGB’s
#„
…. The above expression was

derived by employing Eq. (2.10) which, as previously stated, applies in general to
SO.N/ ! SO.N � 1/ and thus in particular to the present case. By substituting in
the Lagrangian we obtain Eq. (2.12) exactly like in the Abelian model.

The symmetry content of the Lagrangian is also a trivial generalization of the
Abelian case. The linearly-realized group consists now of SO.4/ rotations of the

#„
…

fourplet and it corresponds to the action of the unbroken generators Ta on
#„
ˆ. This is

immediately verified by noticing that a rotation of
#„
… in Eq. (2.26) induces a rotation

of
#„
ˆ in the SO.4/ subgroup embedded in the first 4 � 4 block, i.e.

#„
…! ei˛ata #„… , #„

ˆ! ei˛aTa #„
ˆ : (2.27)

As anticipated, the Goldstones live in the fourplet of SO.4/ and thus they can be
expressed, by inverting Eq. (2.156) in terms of the two Higgs doublet components
H D .hu; hd/

T as

E… D

2
664
…1

…2

…3

…4

3
775 D 1p

2

2
6664
�i .hu � h
u/

hu C h
u
i .hd � h
d/

hd C h
d

3
7775 : (2.28)

The theory is of course also invariant under four non-linearly realized transforma-
tions associated with the broken generators OTi. Their infinitesimal action on the
fields is the same as in the Abelian model, reported in Eq. (2.17).

The electroweak interactions are introduced in the theory by gauging, with
coupling strength g and g0, the SU.2/L�U.1/Y subgroup of SO.4/. The covariant
derivative reads

D�
#„
ˆ D

�
@� � i gW˛

�T˛L � i g0B�T3R

�
#„
ˆ : (2.29)

Non-Abelian gauge kinetic terms are also introduced and collected in a purely
elementary Lagrangian

LE D �1
4

W˛
�	W

�	
˛ �

1

4
B�	B

�	 : (2.30)

This implies that at leading order in  the EW boson propagators and self-
interactions vertices are identical to the SM ones. Important subleading modifica-
tions will be discussed in Chap. 3.

Now that the model is fully specified we can discuss its phenomenology. It
describes the bosonic sector of the SM, namely the Higgs and the EW bosons, plus
the resonance � with a mass

m� D g�f : (2.31)
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Given that no particles are observed beyond the SM ones we will be interested in
a situation where the resonance is heavy, with m� in the TeV or multi-TeV range
much above the EW scale.3 This separation of scales emerges from two combined
effects. First, some gap among v and f is due to the condition  � 1 which, as
anticipated in Sect. 2.1 and discussed at length in the following chapters, is essential
to ensure the viability of the composite Higgs scenario. However making  small
costs fine-tuning and our hope is to achieve a realistic theory for  & 0:1, for
which the separation among v and f is moderate. Second, a gap between f and m� is
naturally achieved by a strong enough composite sector coupling g�. Thorough this
review we will consider g� values in the range g� 2 .1; 4�/, taking however into
account that a moderately large values g� > 1 are preferred to keep the resonances
far from the EW scale. Because of the scale separation, resonances are effectively
decoupled from the SM particles and their presence can be simply ignored at a first
approximation as we will do in the forthcoming discussion. Their effects on the SM
particles phenomenology can be treated in a low-energy effective theory expansion
as we will see in Chap. 3.

Ignoring the resonance, the Lagrangian (2.12) becomes

f 2

2jHj2 sin2
p
2jHj
f

D�H
D�H C f 2

8jHj4
 
2
jHj2
f 2
� sin2

p
2jHj
f

!�
@�jHj2

�2
;

(2.32)

where we employed the standard Higgs covariant derivative

D�H D
�
@� � i g W˛

�

�˛

2
� i g0 B�

�

2

�
H : (2.33)

The phenomenological implications of Eq. (2.32) can be illustrated in two ways,
which we describe in turn. The first approach is to compute directly the physical
couplings by going to the unitary gauge, defined as usual by

H D
"

0
VCh.x/p

2

#
; (2.34)

where V denotes the Higgs VEV, which we take to be real without loss of
generality, and h.x/ describes the physical Higgs fluctuations. In the unitary gauge
the Lagrangian is surprisingly simple

1

2

�
@�h

�2 C g2

4
f 2 sin2

V C h

f

�
jWj2 C 1

2c2w
Z2
�
; (2.35)

3Actually in the present example, in which the resonance is just an EW-neutral scalar singlet, there
is not a concrete phenomenological need of taking it so heavy. We assume m

�
above the TeV

in order to mimic the generic situation encountered in the genuine strongly-coupled models we
eventually aim to describe where such a strong bound applies.
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where W and Z denote the ordinary SM mass and charge eigenstate fields, cw is the
cosine of the weak mixing angle defined as usual by tan �w D g0=g. We immediately
read the vector bosons masses

mW D cwmZ D 1

2
gf sin

V

f
� 1

2
g v ; (2.36)

out of which we have extracted the definition of the physical EWSB scale v '
246GeV. As already discussed in the Abelian model, the latter is not directly
provided by the composite Higgs VEV, but it is related to it and to the Higgs decay
constant f precisely as in Eq. (2.24).

On top of the vector boson masses, the Lagrangian also contains an infinite set of
local interactions involving two gauge and an arbitrary number of Higgs fields. By
Taylor-expanding around h D 0 we easily compute the first few terms

g2v2

4

�
jWj2 C 1

2c2w
Z2
��
2
p
1 �  h

v
C .1 � 2/ h2

v2
� 4
3

p
1 �  h3

v3
C : : :

	
;

(2.37)

where we traded the parameters V and f for the physical EWSB scale v and  D
v2=f 2. Exactly like in the SM we find single- and double-Higgs vertices, but with
modified couplings

kV � gCH
hVV

gSM
hVV

D p1 �  < 1 ; gCH
hhVV

gSM
hhVV

D 1 � 2 : (2.38)

Moreover, higher-dimensional vertices with more Higgs field insertions emerge
and might trigger new interesting phenomena which are absent in the case of an
elementary SM Higgs. It is important to remark that in the limit  ! 0, taken at fixed
v by sending f !1, both these effects disappear. The couplings approach those of
the elementary Higgs and the new interactions are suppressed, being weighted by
inverse powers of f . The composite Higgs becomes effectively elementary in this
limit.

An alternative way to inspect our Lagrangian in Eq. (2.32), which helps in
clarifying why the composite Higgs reduces to the elementary SM one for small ,
is to expand it for large f , obtaining a series of two-derivative operators with higher
and higher energy dimension weighted by inverse powers of f . The first terms in this
expansion, up to dimension 6, are

D�H
D�H � 2

3f 2
jHj2D�H
D�H C 1

6f 2
@�
�
H
H

�
@�
�
H
H

�C : : : : (2.39)

The first term is just the SM Higgs kinetic Lagrangian and this clearly does not occur
by accident. The reason is that the Higgs enters in the Lagrangian only through the
Goldstone boson matrix U which in turn depends on the combination H=f . For
f ! 1 the only relevant term is the one with two Higgs field insertions, which
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corresponds to a d D 4 renormalizable operator. Since the elementary Higgs theory
is the most general renormalizable Lagrangian compatible with gauge invariance,
it is the only model we might have ended up with. The situation would have been
slightly different if we had considered a generic G ! H symmetry breaking pattern,
which delivers more Goldstone bosons than just one Higgs doublet. In that case the
f ! 1 limit would not correspond to the SM, but to a renormalizable theory of
an extended Higgs sector. The presence of extra scalars, which potentially mix with
the SM Higgs, might induce additional corrections to the couplings on top of those
emerging from the higher-dimensional operators.

Going back to our model, and to the Lagrangian in Eq. (2.39), we see that the
d D 6 operators provide the leading corrections to the SM. Actually the two
operators have the same effect on the Higgs coupling to the vector bosons because
one can be transformed in the other by a field redefinition, up to operators of even
higher dimension. Namely, by sending H ! H C ŒjHj2=.3f 2/�H the first can be
eliminated in favor of the second one with coefficient 1=2f 2. In the notation of
[8], where the d D 6 operators that emerge in theories with a pNGB Higgs are
classified, the operator .@jHj2/2 is denoted by OH . It is interesting to notice that OH

does not correct the Higgs vertices with vector bosons directly but it induces, after
EWSB, corrections to the physical Higgs kinetic term and new Higgs derivative self-
interactions. When the canonical kinetic term is restored by the appropriate rescaling
this leads to a modification of the trilinear hVV coupling, which can be readily
checked to match with kV in Eq. (2.38) for small . Computing the quadrilinear
coupling hhVV requires more care because the new trilinear h interactions induced
by OH also contribute to the physical hhVV amplitude through virtual Higgs
exchange. Therefore they must be eliminated by a further field redefinition before
reading the physical coupling and reproducing the second equation in (2.38). Details
are reported in Appendix B of [8].

A crucial phenomenological virtue of our model, which we have not yet outlined,
is that it respects the tree-level � D 1 relation at all orders in 1=f , where � D
m2

W=.cwmZ/
2, as apparent from Eq. (2.36). Correspondingly, the d D 6 operator4

OT D 1

2f 2

�
H
 !D�H

� �
H
 !D�H

�
; (2.40)

which would induce ��1 � v2=f 2 D , is not present in the expansion of Eq. (2.39).
Experimentally, � D 1 is valid at the percent level and the deviations are well
described by SM loop effects. The accuracy of the measurement bounds non–SM
contributions to � at the per-mille level. Therefore if ��1 was of order  reconciling
the model with observations would require  . 10�3 and thus an unacceptable
level of tuning. The reason why � equals 1 in our case is “custodial symmetry”,
namely the fact that the SM group generators are embedded in the global unbroken

4We use again the notation of [8], see also [9] for the bounds on this operator from EW precision
measurements.
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SO.4/, which is an exact symmetry of the composite sector and is only violated
by the gauging. More precisely, since SO.4/ ' SU.2/L�SU.2/R, the gauging of
SU.2/L preserves SO.4/ and the only breaking is due to the hypercharge. The Higgs
is a fourplet and therefore its VEV breaks SO.4/ down to the custodial SO.3/c
subgroup. The W˛

� fields transform as a triplet under SO.3/c. This symmetry is
sufficient to fix the ratio among the W and Z bosons mass terms ensuring � D 1.
For a careful description of this mechanism the reader is referred to the original
literature [10] and to section “The Custodial Symmetries” in Appendix in Chap. 7.
The � D 1 constraint is so strong that all the viable composite Higgs models must
be endowed with custodial symmetry protection. Our SO.5/ ! SO.4/ example is
the “Minimal Composite Higgs Model” (MCHM) [11], in the sense that it delivers
the minimal number of pNGB Higgs fields and relies on the minimal number of
symmetry generators but still obeys custodial symmetry. An even more minimal
possibility would be the SU.3/ ! SU.2/� U.1/ breaking. However it must be
discarded because of the lack of custodial protection. See [12, 13] for non-minimal
composite Higgs constructions where additional Higgs scalars emerge.

After reading this section, where we worked out in detail a model with a pNGB
Higgs based on a weakly-coupled linear �-model, the reader might be led to
overestimate the importance of this kind of constructions. We thus stress that models
of this sort are not interesting, the examples presented here have exclusively an
illustrative purpose and the theories we eventually aim to discuss are very different
from these. The first obvious limitations is that these models are unable to address
the Naturalness problem since they are formulated in terms of an elementary scalar
multiplet

#„
ˆ. Its mass m� is sensitive to the UV physics in exactly the same way

as the Higgs mass in the SM. Still, one might think that the Higgs boson being a
pNGB might lead to some advantage, given that at least its mass is protected from
large radiative corrections by the Goldstone symmetry. However this protection is
insufficient, the Higgs mass receives quadratically divergent contributions from loop
diagrams involving the SM fields, like the ones depicted in Fig. 1.2. In particular
consider those from the gauge fields loops. They originate from the Higgs coupling
to the vector bosons, which we saw above are not much different than in the ordinary
SM. Therefore the result is expectedly similar, namely

ım2
H '

g2

16�2
ƒ2 : (2.41)

Notice that no special cancellation occurs because the gauge field couplings break
the Goldstone symmetry explicitly so that the Higgs mass is not protected at the
radiative level. The occurrence of a divergence in mH , while no Higgs mass term
was present in the original Lagrangian, also signals that the model is actually
non-renormalizable. More precisely, the composite sector defined by Eq. (2.5) is
renormalizable if considered in isolation, renormalizability gets spoiled by the
coupling to gauge fields through the covariant derivative in Eq. (2.29) which breaks
the Goldstone symmetry. In other words, the breaking requires the introduction of
Goldstone-breaking counterterms, among which the Higgs mass, which was not
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present in the Lagrangian in Eq. (2.5). By looking at Eq. (2.41), and taking also into
account that a contribution from the top quark loop, identical to the SM one, would
have arisen if we had tried to introduce the top quark in our model, we immediately
realize that no progress has been made. The essential feature of composite Higgs
being a solution of the Naturalness problem is the strongly-coupled nature of the
underlying UV theory, by which the Higgs mass is stabilized through dimensional
transmutation. The Goldstone symmetry is required to keep the Higgs naturally
lighter than the other strong sector’s resonances, it is in itself of no help in addressing
the Naturalness problem.

2.3 General CCWZ Construction

It is clear, also in light of the previous discussion, that we can not rely on the
example of the previous section for the study of composite Higgs phenomenology.
Some of the results we obtained, and in particular the pattern of Higgs coupling
modifications in Eq. (2.38), are actually of general validity and do not rely on the
specific model we considered, but in order to establish this fact we need a general
treatment of theories with spontaneous symmetry breakdown: the famous Callan–
Coleman–Wess–Zumino (CCWZ) construction [14, 15]. This formalism allows to
write general low-energy effective Lagrangians for strongly- or weakly-coupled
theories characterised by a generic G ! H symmetry breaking pattern, describing
the Goldstone bosons associated with the breaking and the heavy resonances. It
is also readily extended to incorporate explicit symmetry breaking, a property we
will extensively make use of in Sect. 2.4. Furthermore the generality of the method
makes it an essential tool for the systematic study of non-minimal cosets, when
trying to go beyond the canonical SO.5/! SO.4/ example.

2.3.1 The Basic Formalism

The starting point is to identify the correct degrees of freedom that describe the
massless NGB, one for each broken generator as predicted by the Goldstone
theorem. Suitable candidates are obtained by considering, in the field space of the
underlying theory, configurations that are related to the representative vacuum

#„
F by

a local G transformation, namely

#„
ˆ.x/ D ei �A.x/TA #„

F ; (2.42)

where TA denotes, following the notation of Sect. 2.1, the full set of generators of
the group G . Each �A.x/ is potentially a massless field because any constant �A

configuration corresponds to a global symmetry transformation and thus it leads to
one of the equivalent vacua of the theory, with the same energy as the original one.
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Therefore �A.x/ has no potential and consequently zero mass, its energy is entirely
kinetic and it originates from derivative terms in the Lagrangian.

However not all these fields are physical, some of them are redundant and they
can be dropped from the ansatz (2.42). In order to see how this works, and with the
purpose of introducing the basic formula out of which CCWZ is constructed, we
notice that a generic, global or local group element gŒ˛A�, can be decomposed in a
unique way as the product5

gŒ˛A� D ei˛ATA D ei f
OaŒ˛� OTOa  ei faŒ˛�Ta

; (2.43)

where, as in Eq. (2.1), Ta and OT Oa denote the unbroken and broken generators,
respectively. The transformation on the right is an element of the subgroup H and as
such it leaves the representative vacuum invariant.6 By applying the above equation
to the ansatz (2.42) we thus obtain

#„
ˆ.x/ D U Œ…�

#„
F ; (2.44)

where we defined the Goldstone matrix

U Œ…� D ei
p

2
f …

Oa.x/ OTOa
; (2.45)

in terms of canonically-normalized scalar NGB fields …Oa.x/. In accordance with
the Goldstone theorem we have one massless scalar for each broken generator. The
fields associated with the unbroken ones drop out from the ansatz and thus do not
lead to physical degrees of freedom. Because of Eq. (2.43), the Goldstone bosons
span the left coset space G=H , defined as the equivalence class of G modulo H
elements multiplication.

Symmetries are the central aspect of the CCWZ construction, let us then work
out the action of the G group on the Goldstone bosons. Namely, we seek for an
operation on the field variables

#„
….x/ ! #„

…
.g/
.x/ ; (2.46)

associated with a generic element g 2 G , which results in a symmetry transfor-
mation of the ansatz configuration defined by Eq. (2.44). The first attempt would
be to look for a transformation that induces U ! g  U on the Goldstone matrix,
however this immediately fails because g  U is a generic element of G and as such
it can not be expressed as the exponential of broken generators only. Therefore it

5It is trivial to verify the equation that follows for an infinitesimal group transformation and it is not
hard to believe that it can be extended by continuity to finite group elements that are continuously
connected to the identity.
6An analogous decomposition obviously holds with the H element on the left.



34 2 Goldstone Boson Higgs

is impossible to induce U ! g  U by acting on the Goldstone fields. However by
Eq. (2.43) we can decompose g  U, in a unique way, as the product of one broken
generator exponential and one H element and define ….g/ implicitly by the relation

g  U Œ…� D UŒ….g/�  h Œ…I g� ; (2.47)

where

h Œ…I g� D ei �aŒ…I g�Ta
: (2.48)

Or, equivalently

U Œ…� ! U
�
….g/

 D g  U Œ…�  h�1 Œ…I g� : (2.49)

This operation, given that h leaves
#„
F invariant, induces a symmetry transformation

on the ansatz (2.44)

#„
ˆ.x/ ! g

#„
ˆ.x/ : (2.50)

Being the latter a symmetry of the underlying theory, it has to be respected also by
the effective Lagrangian for the Goldstone bosons. Only a very peculiar set of terms,
invariant under Eq. (2.49), are thus allowed.

Before discussing the implication of the symmetry, few comments are in order.
First, it must be clarified that the above derivations do not rely on the explicit
matrix representation adopted for the group generators. Indeed the coefficients fa
and fOa appearing in the decomposition (2.43) are uniquely fixed by the generators
commutation relations and not by their explicit form. Consequently, the same holds
for the Goldstone transformation function ….g/ and for the coefficients �aŒ…I g� of
h, which are derived from Eq. (2.43). This means that the Goldstone matrix UŒ…�
can actually be defined for any representation of the TA generators. Nevertheless if
not otherwise specified we will call Goldstone matrix the one in the fundamental
representation. Similar considerations apply to the h transformation. Second, it is
important to stress that the relevant symmetry for the classification of the operators
is provided by the full group G and not only by the unbroken subgroup H . A
spontaneously broken symmetry is thus not really broken, in the sense that it still
implies powerful constraints on the allowed operators, not much differently from
an unbroken one. This is expressed mathematically by the fact the Goldstone boson
transformation defined by Eq. (2.49) provides a full-fledged representation of the
whole G because it respects the group multiplication rule, namely

….g1�g2/ D �….g2/
�.g1/

: (2.51)

Of course ….g/ is rather different from the habitual group representations. The
latter ones simply consist of constant transformation matrices acting linearly on
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the field variables while ….g/ carries a complicated non-linear dependence on ….
For this reason it is called a “non-linear” representation and the spontaneously
broken group is sometimes said to be “non-linearly realized” rather than broken.
We will soon encounter other non-linear representations, suitable for describing the
transformation properties of the heavy resonance fields.

It is easy and instructive to derive the Goldstone bosons transformation explicitly
in the particular case of an H subgroup transformation, we just need to recall few
elementary properties of Lie algebras.7 Namely, we will use the fact that the G
generator algebra decomposes as

�
Ta; Tb

 D i f ab
cT

c C i�
�f ab

Oc OT Oc � Tc
�
ta
Ad

� b

c
;

�
Ta; OT Ob D i f aOb

Oc OTOc C i�
�f aOb

c Tc � OT Oc .t� a/
Ob

Oc ;

� OT Oa; OT Ob D i f OaOb
cT

c C i f OaOb
Oc OT Oc ; (2.52)

where the first equality, i.e. the fact that no broken generator appears in the
commutator of unbroken ones, is due to H being a subgroup and the second equality
follows from the first one because the G structure constants f ABC are completely
antisymmetric.8 In the commutator of broken generators, instead, both terms are
present aside from the special cases called “symmetric cosets” where only unbroken
generators appear because f OaOb

Oc D 0. Symmetric cosets are endowed with an algebra

automorphism under OT ! �OT which can be associated with a Z2 parity on the
Goldstones, leading sometimes to interesting phenomenological consequences. In
Eq. (2.52), tAd

a is the adjoint representation of the Lie algebra of the subgroup H
while the matrices t� a, which can also be shown to obey the H algebra by the Jacobi
identity, form a not yet specified H representation denoted as r� . We will readily
see that r� is the representation in which the Goldstones transform under H . It can
be identified, for any coset, by looking at the decomposition under H of the adjoint
of G , namely at

AdG D AdH ˚ r� : (2.53)

For SO.N/=SO.N � 1/ cosets, r� is the fundamental representation in accordance
with the results of the previous section.

When g 2 H , namely for

g D gH D ei˛aTa 2 H ; (2.54)

7See for instance [16] for a concise review on Lie algebras and a computer package that could be
useful in the study of composite Higgs models with non-minimal cosets.
8We consider here a compact Lie group G , whose structure constants are indeed completely
antisymmetric. The extension of Eq. (2.52) to non-compact case is possible. For a composite Higgs
model based on a non-compact coset, see [17].



36 2 Goldstone Boson Higgs

Eq. (2.47) is immediately worked out and reads

gH U Œ…� D exp

"
i

p
2

f
…Oa.x/ gH  OT Oa  g�1

H

#
 gH

D U
h
ei˛at� a #„

…
i
 gH ; (2.55)

having employed the exponentiated version of the commutation relation in
Eq. (2.52), i.e.

ei˛aTa  OT Oa  e�i˛aTa D OT Ob �ei˛at� a� Oa
Ob : (2.56)

Therefore, as anticipated,… transforms in r�

…Oa ! …Oa.gH / D �ei˛at� a� Ob
Oa …Ob ; (2.57)

and the H transformation on the right side of the Goldstone matrix in Eq. (2.47)
is hŒ…I gH � D gH . Contrary to the general ones, H subgroup transformations act
linearly on the Goldstones. Verifying H invariance can thus serve as a simple check
of the consistency of our effective Lagrangian.

The situation is different for the transformations along the broken generators.
There is no simple way to write them explicitly, not even at the infinitesimal level,
aside from particular cases such as the SO.N/=SO.N � 1/ coset in Eq. (2.17). Their
action is relatively simple only on the Goldstone matrix, as shown in Eq. (2.49), and
this is why UŒ…� is the fundamental object to construct invariants in CCWZ. The
broken transformations can however be worked out in a combined expansion on the
transformation parameters ˛Oa, defined by g D gG=H ' �C i˛Oa OT Oa, and on the field
variables, leading to

…Oa ! ….gG=H / Oa D …Oa C fp
2
˛ Ǫ CO

�
˛
…2

f
C ˛ …

3

f 2
: : :

�
: (2.58)

This is the famous “shift symmetry”, which forbids non-derivative potential terms in
the Goldstone Lagrangian. The implications of the symmetry on the terms involving
derivatives are instead more subtle, and harder to recognize in the Lagrangian
because of the polynomial corrections to the shift. The latter implies that the
transformation relates operators with different number of fields, leading to invariant
Lagrangians with an infinite series of polynomial terms. For instance, out of the
Goldstone kinetic terms a whole set of two-derivative interactions with any number
of Goldstone legs would be generated by applying Eq. (2.58). By the CCWZ
construction all these terms are automatically written at once.

A particular case in which the transformation can be written explicitly is when
the Goldstone fields are constant, namely when they are set to their VEV … D h…i
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and we perform a transformation g D U�1Œh…i�. In this case we trivially find

h #„…i ! #„
0 ; (2.59)

showing, as anticipated in the previous sections, that the Goldstone bosons VEV
is unobservable because it can be set to zero by a symmetry transformation. This
makes that in composite Higgs EWSB effects are mediated by the explicit breaking
of the Goldstone symmetry.

Let us finally turn to the classification of the operators allowed by the symmetry.
The two fundamental objects employed in the construction are the dŒ…��; Oa and
eŒ…��; a symbols, which carry, respectively, one Oa index of the Goldstone repre-
sentation r� and one a in the adjoint of H . They also contain one derivative, leading
to the space-time index �, because we saw that derivatives are needed to construct
non-trivial invariants. The d and e symbols are defined by decomposing on the G
algebra the Maurer–Cartan form constructed with U, namely

i UŒ…��1  @�UŒ…� D d�; OaŒ…� OT Oa C e�; aŒ…�T
a � d� C e� ; (2.60)

where the shorthand notations d� and e� have been introduced. Under G , following
Eq. (2.49), the Maurer–Cartan form transforms as

i UŒ…��1  @�UŒ…� ! hŒ…I g� 
�

i UŒ…��1  @�UŒ…�
�
 hŒ…I g��1

C i hŒ…I g�  @�hŒ…I g��1 : (2.61)

We notice that the shift term on the second line is itself a Maurer–Cartan form,
the one associated with the transformation hŒ…I g�, which is an element of the
subgroup H . Therefore it decomposes on the Lie algebra of H and it does not have
components along the broken generators. It follows that the shift is carried entirely
by the e symbol while d transforms linearly with h9

d�Œ…� ! hŒ…I g�  d�Œ…�  hŒ…I g��1 ;

e�Œ…� ! hŒ…I g�  �e�Œ…�C i @�
�  hŒ…I g��1 : (2.62)

When rewritten in components by Eq. (2.56), the d symbol transformation is a
simple rotation of the Oa index in the representation r�

d�; Oa ! d.g/�; Oa D
�
ei �aŒ…I g�t� a� Ob

Oa d�; Ob : (2.63)

We see that d�; Oa transforms like the Goldstones and this is not surprising because
the d symbol is a sort of derivative of the Goldstone fields, in the sense that when

9Of course h is itself highly non-linear, therefore d still lives in a non-linear representation of G .
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expanding it we find

d�; Oa ' �
p
2

f
@�…Oa CO

�
@…=f …2=f 2

�
: (2.64)

However d�, differently from @�…, keeps transforming in r� under the full G and
not just under the subgroup H , this is why it is useful to construct invariants. The
e symbol components e�; a have an index in the adjoint of H and they transform,
as the above equation clearly shows, as if they were gauge fields associated with a
local H invariance. As such they can be employed to construct covariant derivatives
and field-strengths, as we will see later, but they can not be inserted directly in the
operators.

The CCWZ prescription is to construct G-invariant operators by combining d and
e symbols and derivatives. With the remarkable exception of the Wess–Zumino–
Witten term [18–20] (which signals the presence of a global anomaly in G), all
the invariant operators can obtained in this way. The reason why this results in a
systematic and simple procedure is that the transformation rules are now entirely
expressed in terms of the linear action of the matrix h. Therefore we just have to
worry about building H invariants with the standard group theory tools and the full
G invariance will follow automatically. In doing so one must however remember
that H is effectively a local group because h depends on the Goldstone fields ….x/.
The simplest operators we can think to, which contain only two derivatives, are the
ones constructed by two powers of the d symbol, with the two r� indices properly
contracted to form an H invariant. The most general combination of such operators
defines the so-called 2-derivative non-linear �-model Lagrangian. If H is compact,
since r� is real, one such an invariant always exists and it is given by10

L.2/ D f 2

4
d�; Oaı OaObd� Ob D

1

2
@�…Oa@�…Oa C

X
n

O
�
.@…/2 …n=f n

�
: (2.65)

It provides the Goldstone bosons kinetic terms plus an infinite set of two-derivative
interactions, which are all fixed by the symmetry and controlled by the unique
parameter f . In general, other 2-derivative operators might exist, provided there is
more than one way to form invariants out of two r� indices. One example which
might be relevant for composite Higgs is the coset SO.6/=SO.4/ which delivers
9 Goldstones in the representation r� D 4 ˚ 4 ˚ 1. Being r� reducible, several
invariants can be formed (4, in this case) and more free parameters appear in the
non-linear �-model Lagrangian.

For the minimal composite Higgs coset SO.5/=SO.4/, instead, r� D 4 is
irreducible and there is only one invariant. Therefore all the 2-derivative Higgs
interactions are predicted in terms of the Higgs decay constant f . Given that the

10It is not worth considering the case of non-compact H since it leads to negative-defined kinetic
terms for the Goldstones.
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CCWZ construction is completely general, this means that any explicit composite
Higgs model, provided it is based on the minimal symmetry breaking pattern
SO.5/! SO.4/, leads to the exact same Lagrangian and physical predictions at the
2-derivative level. We will see in the next section that this remains true when gauge
fields are included. We can thus conclude, even before computing the Lagrangian
explicitly, that all the results previously obtained in the linear �-model example are
completely general, in spite of the fact that the linear �-model is just one possible
realization of the composite Higgs idea and furthermore not a particularly motivated
one. This first application of the CCWZ method should be already sufficient to
illustrate the tremendous predictive power of the non-linearly realized symmetry
on the physics of a pNGB Higgs.

2.3.2 Gauge Sources and Local Invariance

Before going on with the discussion we need to take one step back and to add an
additional bit of complication. Until now we have been considering a global G
invariance, now we want to extend the formalism to the case in which G is made
local by introducing the appropriate set of gauge fields A�;A, transforming in the
standard way

A� � A�;ATA ! A.g/� D g.x/  �A� C i @�
�  g.x/�1 ; (2.66)

under a local G element g.
This is almost the situation we have to deal with in the study of composite Higgs

theories where a subgroup of the global G is gauged to describe the EW vector
bosons. On general grounds, the gauging procedure means modifying the composite
sector Lagrangian by adding couplings with the currents J�;A associated with the
global symmetry generators

LC ! LC C A�;AJ�;A : (2.67)

The A  J term is of course precisely designed, by the definition of the Noether
currents, to compensate for the variation of LC under space-time dependent G
transformations leading to a locally invariant theory. If the full G group has to
be gauged, kinetic terms have to be introduced for all the A�;A’s, but nothing
forbids us to gauge a subgroup by giving a kinetic term only to a subset of the
fields. Equivalently, all the fields can be formally gauged and the unwanted ones
eventually decoupled by an infinite kinetic term, which corresponds to vanishing
coupling strength. Any process which does not involve gauge bosons propagation
is completely insensitive to the presence or to the absence of the kinetic terms
and to the couplings, therefore all the A�;A’s can be treated on the same footing
as external sources. Some of them will be made dynamical by the kinetic terms
and the others will be regarded as non-dynamical and eventually set to zero at
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the end of the calculation. The advantage of retaining the extra non-dynamical
fields is of course the presence of the enlarged local G group under which the
sources transform as in Eq. (2.66). With this method one can study the effective
composite Higgs Lagrangian for Goldstone, gauge and possibly resonance fields
obtained by integrating out the composite sector dynamics. Propagating gauge fields
effects, which of course are sensitive to the kinetic terms, are conveniently added
at a second stage by working in perturbation theory. Notice that the latter effects
break G because the truly dynamical fields do not fill a complete G representation.
This structure complies with the picture outlined in the Introduction and with the
examples of the previous section. In the minimal SO.5/=SO.4/ model we turn on
all the 10 SO.5/ gauge fields and eventually identify as physical only the 4 ones
associated with the SM SU.2/� U.1/ gauge group. In this case the physical value
of the A� source reads

A� D A�;ATA D gW˛
�T˛L C g0B�T3R : (2.68)

in accordance with Eq. (2.29).
It is not hard to generalize the CCWZ construction to the local case. The

Goldstone transformation property is still defined by Eq. (2.49) where g is now a
local group element. The Maurer–Cartan form, which we used to define the d and
e symbols, generalizes to the object A� constructed with the following logic: the
Goldstone matrix UŒ…� is a local element of G and as such it can be used to act
on the gauge field A� following Eq. (2.66). The result of this operation is still an
element of the G algebra and as such it can be decomposed in terms of broken
and unbroken generators similarly to what we did for the Maurer–Cartan form in
Eq. (2.60). Actually it is worth acting with U�1, and not with U, defining

A� D A.U
�1/

� D UŒ…��1  �A� C i @�
�  UŒ…� � d�Œ…; A�C e�Œ…; A� : (2.69)

The Maurer–Cartan form is immediately recovered in the ungauged limit A� D 0.11

Furthermore, A� transforms under G exactly like the Maurer–Cartan form does in
the global case, namely as in Eq. (2.61). By exploiting the group multiplication rules
the latter property is shown by a one-line calculation

A� D A.U
�1/

� ! A.g/�
.h�U�1 �g�1/ D A.U

�1/
�

.h/ D h
�
A� C i @�

�
h�1 : (2.70)

The generalized d and e symbols thus transform precisely as in Eq. (2.62)

d�Œ…; A� ! hŒ…I g�  d�Œ…; A�  hŒ…I g��1 ;

e�Œ…; A� ! hŒ…I g�  �e�Œ…; A�C i @�
�

hŒ…I g��1 ; (2.71)

11Notice that A� can also be regarded as the trivial generalization of the Maurer–Cartan form
obtained by replacing the ordinary derivative with the covariant one. Expressing it in terms of the
gauge-transformed A� is not just a fancy but also a useful rewriting.
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though of course, now, under the full local G group. According to the defini-
tion (2.69), the generalized d and e symbols are provided by those of the global
case, which contain one derivative of the Goldstone field, plus non-derivative
terms proportional to A�. In order to maintain the homogeneity of the operators
constructed out of d and e it is thus convenient to treat the gauge fields on the same
footing as derivatives and to regard both @ and A as O.@/ or equivalently, by going
to the momentum space, as O.p/ objects. The reader can get an idea of how the d
and e symbols look like in concrete by Eq. (2.178) in section “Explicit CCWZ for
SO.5/=SO.4/” in the Appendix, where these objects are explicitly computed for the
minimal Coset SO.5/=SO.4/.

From this point on, since we encountered exactly the same transformation
rules, the classification of locally invariant operators proceeds in parallel with the
globally invariant ones. In both cases, local H invariance is all what we have to
worry about. The 2-derivative non-linear �-model Lagrangian, for instance, trivially
generalizes to

L.2/ D f 2

4
d�; OaŒ…; A�ı OaObd� ObŒ…; A� ; (2.72)

and contains now not only the Goldstone kinetic terms and self-couplings, but
also interactions involving the gauge fields, which are all dictated by the local G
invariance and predicted in terms of the sigma-model scale f . All the previous
considerations about the unicity of the �-model Lagrangian in SO.5/=SO.4/ remain
the same, meaning that also the Higgs/gauge interactions are completely determined
by the coset structure. In particular the modifications of the Higgs couplings to
the gauge fields we obtained in the linear �-model example in Eq. (2.38) must be
regarded as robust model-independent predictions of the SO.5/=SO.4/ composite
Higgs. We verify in section “Explicit CCWZ for SO.5/=SO.4/” in the Appendix
that L.2/ as given above coincides as expected with the Lagrangian (2.32) we derived
in the linear �-model.

2.3.3 Two Derivative Tensors and Resonances

The classification of O.p2/ (two-derivatives) invariant operators, out of which we
defined the non-linear �-model Lagrangian, has been extremely simple because
the d symbol was the only object which could have appeared in these operators.
Going to higher orders, as we will need to do in the next chapter, requires more care
and some additional technicality. A simple way to proceed is to forget momentarily
about invariants and classify instead all the possible two-derivative tensor operators
which transforms homogeneously under h.
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The first ones we might think to are those constructed with two d-symbols, of the
form

d�; Oad	; Ob 2 r� ˝ r� D AdH ˚ 1H ˚ : : : : (2.73)

They transform in the tensor product of two Goldstone representations, whose
decomposition contains the adjoint, the singlet, plus eventually other representations
depending on the nature of the group H . Notice that the decomposition in irreducible
representations is what matters for the CCWZ method. Since H invariance is all
what is required, tensor product components belonging to different irreducible
representations can be employed separately to construct invariant operators. The
singlet and the adjoint components are immediately worked out for a generic coset

.d21/�	 D ı OaObd�; Oad	; Ob ; .d2Ad/�	; c D f OaOb
c d�; Oad	; Ob ; (2.74)

in terms of the structure constants f appearing in Eq. (2.52). The existence and the
form of other tensors depend instead on the coset. In SO.5/=SO.4/ one extra d2

tensor is found in the 9 of SO.4/.
A second class of operators is formed by acting on the d symbol with one

derivative, or more precisely with a suitable covariant derivative which takes care
of the local nature of the d symbol transformation rule in Eq. (2.63). The e symbol
transforms precisely like a gauge connection (2.71) and thus the covariant derivative
is given by

.D  d/�	; Oa � @�d	; Oa � i e�; a .t�
a/

Ob
Oa d	; Ob 2 r� : (2.75)

It transforms, by definition, in the representation r� . Whether D  d constitutes a
single CCWZ tensor or not depends on the number of irreducible components of r� .

Another object we can form, exploiting once again the fact that e� transforms
like a gauge field, is the field strength tensor

E�	 � E�	; aTa D i
�
D�; D	

 D @�e	 � @	e� � i Œe�; e	� ; (2.76)

which transforms homogeneously with h in the adjoint representation, namely

E�	Œ…; A� ! hŒ…I g�  E�	Œ…; A�  hŒ…I g��1 : (2.77)

In components, E reads

E�	; a D @�e	; a � @	e�; a C f bc
ae�; be	; c 2 AdH : (2.78)

It turns out that d2, D  d and E exhaust the most general O.p2/ tensor, but this
is not yet apparent because in our discussion we have ignored the possibility of
constructing tensors directly from the gauge fields A� rather than starting from the
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d and the e symbols. Notice that A� is very different from the other CCWZ objects
because it transforms directly with the G transformation g.x/, as in Eq. (2.66), rather
than with the H matrix h. This is the reason why we had to “dress” it with the
Goldstone matrix in Eq. (2.69): the Goldstone matrix, since in transforms with g on
one side and with h on the other, is precisely what is needed to change an index
transforming with g into a one transforming with h. We might consider dressing the
A� field strength defining an object

F�	 D UŒ…��1  F�	ŒA�  UŒ…�
D UŒ…��1  �@�A	 � @	A� � i ŒA�; A	�

�  UŒ…� ; (2.79)

that transforms homogeneously with h. Clearly, F belongs to the algebra of G and
therefore decomposes along the broken and the unbroken generators leading to two
tensors

F�	 D .FAd/�	; a Ta C .Fr� /�	; Oa OT Oa 2 AdH ˚ r� ; (2.80)

in the adjoint and in the r� representation, respectively. However the F tensors are
redundant, and thus they can be ignored in the operator classification because they
can be expressed as linear combinations of the others. This is readily shown by
noticing that the field strength F�	ŒA� reacts linearly to a gauge transformation of
the argument so that

F�	 D UŒ…��1  F�	ŒA�  UŒ…� D F�	
h
A.U

�1/
i

D F�	 Œd C e� ; (2.81)

where we made use of the definition of d and e in Eq. (2.69). The object on the
second line of the equation is an O.p2/ tensor constructed in terms of the d and
the e symbols and thus it must be, according to the previous classification, a linear
combination of d2, D  d and E.

Notice that Eq. (2.81) could be used in two ways, either for eliminatingF in favor
of the others or for expressing two linear combinations of d2, D  d and E in terms of
FAd and Fr� . This second option might be convenient for certain applications. For
instance in composite Higgs one might want to separate the operators constructed
with the F ’s, which are entirely induced by the SM gauging and vanish in the
ungauged limit A� ! 0, from the ones which emerge from the composite sector
alone. Moreover the F components are easy to compute because they contain no
Goldstone boson derivatives and thus it might be useful to express the other tensors
in terms of them. For those applications Eq. (2.81) needs to be explicitly worked
out. By exploiting the commutation relations in Eq. (2.52) we obtain

.FAd/�	; a D E�	; a C .d2Ad/�	; a ;

.Fr� /�	; Oa D .D  d/�	; Oa � .D  d/	�; Oa C .d2r� /�	; Oa ; (2.82)
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where d2r� is a d2 operator in the r� representation defined as

.d2r� /�	; Oa D f OaOb
Oc d�; Oad	; Ob : (2.83)

Notice that for symmetric cosets, where f OaOb
Oc D 0, d2r� vanishes.

Aside from being a derivation of Eq. (2.82), the discussion above illustrates
how the gauge source fields can be ignored in the classification of CCWZ tensors
or invariant operators. The d� symbol, the E�	 field-strength and the covariant
derivatives is all what is needed, any object directly formed with the sources can
be systematically expressed in terms of the latter as we saw above for the F
tensors. It is actually even simpler than that because E�	 is the commutator of two
covariant derivatives as in Eq. (2.76). Therefore d� and D� are, strictly speaking,
the only needed objects. However for practical purposes derivative commutators are
conveniently traded for the field-strength. In Sect. 3.2.1 we will make use of those
rules for the classification of the complete SO.5/=SO.4/ Lagrangian at O.p4/.

In what follows we will occasionally need to include in our model, on top of the
Goldstone and of the gauge bosons, also some of the composite sector resonances.
The latter states are parametrically heavier than the former ones, but it might
still be worth including some of them in the effective field theory if their mass
happens to be smaller than the typical composite sector scale. CCWZ is the ideal
framework to discuss resonances. In full analogy with what we found for the d-
symbol components in Eq. (2.63), we introduce resonance fields ‰i transforming as

‰i ! ‰.g/
i D

�
ei �aŒ…I g�t‰ a� j

i
‰j � hr‰ Œ…I g� j

i ‰j ; (2.84)

where �aŒ…I g� are the parameters of the H transformation hŒ…I g� as in Eq. (2.48)
and t‰a are the generators of H in a given representation r‰ . The d-symbol
transformation property corresponds to the particular case r‰ D r� . This is a
consistent assignment because it respects the G group multiplication rules

‰.g1�g2/ D �‰.g2/
�.g1/

; (2.85)

thanks to the following property of h

h Œ…I g1  g2� D h
�
….g2/I g1

  h Œ…I g2� : (2.86)

The latter is easily shown from the definition in Eq. (2.47). Notice that all the
structural properties of h, among which the one above, only depend on the
commutators algebra of the generators employed in its definition and not on their
explicit representation. Therefore Eq. (2.86) holds for hr‰ as well, in spite the latter
being defined as the exponential of H generator matrices t‰a.

We stress once again that the resonance transformation property is defined in
terms of a representation of H , and not of the full G group. Therefore the resonance
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fields organize themselves in “short” multiplets, corresponding to H irreducible
representations, each of which can be treated separately. If for instance G D SO.5/
and H D SO.4/, resonances in the 4 or in the 1 can be introduced individually
rather than grouping them in a complete 5 of G as we would have been obliged
to do if G were unbroken. Indeed we know that in spontaneously broken theories
no degenerate G multiplets are expected and the spectrum is classified in terms of
the irreducible representations of the unbroken group. It is thus reassuring that the
formalism allows us to deal with H multiplets individually.

In CCWZ, effective Lagrangian are written in terms of the resonance fields and of
the d and the e symbols, with the indices properly contracted to form H invariants.
Clearly when taking derivatives of the resonances the local nature of H must be
taken into account by using the covariant derivative

D�‰i D @�‰i � i e�; a .tr�
a/

j
i ‰j : (2.87)

If for instance ‰ is a fermionic resonance its kinetic Lagrangian is simply

i‰��D�‰ �m‰‰‰ : (2.88)

Notice that it contains, through the “e” term in the covariant derivative, a full set of
interactions with the Goldstone and the gauge fields which are all dictated by the
symmetry and controlled by the �-model scale f .

2.4 Partial Fermion Compositeness

Nothing has been said up to now on how we plan to introduce in our construction
the SM matter fermions, their interactions with the Higgs and eventually generate
their mass. This is actually a delicate task, which is achieved in modern composite
Higgs models by relying on the so-called “partial compositeness” hypothesis.
partial compositeness was first introduced by D.B. Kaplan in [21] and more
recently rediscovered in the context of extra-dimensional models of EWSB [22].
Interestingly enough, partial compositeness emerges naturally and automatically in
those models. This provides a hint that the partial compositeness hypothesis might
eventually find a microscopic realization. See Sect. 1.3 for additional considerations
on this aspect.

2.4.1 The Basic Idea

It is convenient to illustrate partial compositeness in opposition to the “standard”
approach to matter fermions in strongly-coupled EWSB models, namely the one
which was originally adopted in technicolor models [23–27] and later in the
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composite Higgs context [1] (see also [28] for a recent example). In technicolor, and
in composite Higgs as well as explained in Sect. 1.3, the SM fermions are introduced
as elementary fields external to the composite sector and coupled to the latter by
bilinear operators of the form

LInt D �t

ƒd�1
UV

qLOc
StR C �b

ƒd�1
UV

qLOSbR C h.c. ; (2.89)

where qL D .tL; bL/
T , tR and bR denotes one of the SM quark fields families, even

though for the present discussion we will be mainly interested in the third one as the
notation suggests. Leptons could be included along similar lines but they play no
role in what follows. All the fields are assumed to be canonically normalized, with
SM-like kinetic terms

LE D qLi =DqL C tRi =DtR C bRi =DbR C : : : ; (2.90)

that originate, exactly like for the gauge fields, from the elementary sector of the
theory. In Eq. (2.89), OS is meant to be one Lorentz scalar operator composed of
strong sector fields. Its SM quantum numbers are precisely those of the Higgs field
and as such it can form Yukawa-like couplings.

Writing downOS explicitly in one example helps to clarify what we have in mind.
In minimal technicolor, which consists of a scaled version of two-flavor QCD, we
have

.OS/
j

i D .�O4
S C i �˛O˛

S /
j

i D ‰
j
R‰L; i ; (2.91)

where ‰L;R are the chiral techniquark fields, endowed with flavour indices i; j D
1; 2 in SU.2/L�SU.2/R. The equation above provides the OS components in the
real fourplet notation, one could switch to the complex doublet notation trough
Eq. (2.156). Therefore in technicolor OS is a techniquark bilinear with energy
dimension d D 3, the elementary/composite interactions are dimension-6 four-
fermion operators and as such are suppressed by two powers of the high scale,ƒUV,
at which they are generated. Equation (2.89) provides the obvious generalization,
based on dimensional analysis, for an arbitrary OS dimension d.

The physical origin of the suppression scale ƒUV is pictorially represented in
Fig. 2.2 and it can be understood as follows, along the lines of Sect. 1.3. At around
the TeV the strong sector confines and it dynamically generates the new physics
scale m�, which can be identified with the typical mass of the composite resonances.
Above that scale the strong sector approaches a conformal fixed point around
which the energy scaling is dictated by the operators dimensionality. In minimal
technicolor models the conformal fixed point merely correspond to the free theory of
techniquarks and technigluons, weakly perturbed by the technicolor interactions, but
on general grounds strongly interacting fixed points might also be considered. See
[29] for a review and [30] for a concise but clear discussion. An explicit realization
is the so-called “walking technicolor” model [31–36]. The fermion fields are not part
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Fig. 2.2 A pictorial view of the partial compositeness approach to SM fermion couplings
compared with the old-fashioned technicolor way

of the strong sector, therefore their origin as physical particles and their interactions
will emerge from a more complete theory at a scale ƒUV � m�. The scale ƒUV

should be regarded as the cutoff scale of the BSM theory itself. For example ƒUV

might be the extended technicolor scale (see [24, 37]) at which the four-fermion
interactions among quarks and techniquarks are generated by the exchange of heavy
gauge fields.

The interaction strength is dictated by dimensional analysis, up to dimensionless
coefficients �t and �b which depend on the couplings of the underlying microscopic
theory. In the extended technicolor example, �t;b � g2ETC, where gETC is the
extended technicolor gauge coupling. On general grounds �t;b could be small, if
the underlying couplings are weak, but they can not be too much larger than unity
if the underlying theory has to remain perturbative. This implies an upper bound
�t;b < �Max, where for simplicity we treat �Max as an order-one parameter even
if its numerical value might be larger, for instance �Max � 16�2 in extended
technicolor. More formally, the bound on � comes from the fact that the elementary
quark interaction must be a small perturbation of the strong sector dynamics in
the full Œm�; ƒUV� range, otherwise our picture is not self-consistent and the scale
separation among m� and ƒUV gets destabilized.

As depicted in Fig. 2.2, the elementary quark interactions in Eq. (2.89) must be
evolved down to m� before reading their low-energy implications. In our hypothesis
the evolution is driven by the operator dimension12

�t;bŒm�� ' �t;b

�
m�
ƒUV

�d�1
; (2.92)

12The equation below trivially follows from the fact that the interaction operator stays unchanged
during the evolution at a fixed point. The coupling runs just because of the different normalization
of the operator in the IR, which is provided by the scale m

�
rather than by ƒUV. The IR

normalization is the appropriate one to read the low-energy effects of the interaction.
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up to corrections due to departures from the fixed point, either intrinsically present
in the strong sector or induced by the elementary quark interaction itself. The quark
masses, or equivalently the Yukawa couplings, are thus estimated to be

yt;b D
p
2

mt;b

v
' �t;bŒm�� ' �t;b

�
m�
ƒUV

�d�1
: (2.93)

By taking into account that d�1 can be shown to be necessarily positive by unitarity
arguments, so that the couplings get power suppressed when running to the IR, we
see that the above equation is problematic in two respects. First, the presence of the
upper bound � < �Max makes hard to generate large Yukawas in our setup, which
foresees a considerable scale separation ƒUV � m�. If for instance �Max � 1 and
d is significantly larger than 1 no realistic top Yukawa coupling yt ' 1 can be
obtained. Second, even if it was possible to get yt right by a large enough �Max this
could definitely not be achieved for an arbitrarily large scale separation. Since m�
is tied to the TeV scale by the Naturalness problem we end up with an upper bound
on ƒUV, which reads

ƒUV '
�
�t

yt

� 1
d�1

m� < �
1

d�1

Max TeV : (2.94)

But ƒUV is where the Yukawa’s are generated, therefore the full flavor structure of
the SM must emerge at that scale. If it is not heavy enough, above around 105 TeV,
large and phenomenologically unacceptable extra flavor-violating interactions will
also arise, at least in the absence of special mechanisms and selection rules in the
underlying microscopic theory. In the technicolor case, where d D 3 and �Max D
16�2, ƒUV can be quantitatively estimated to be

ƒUV < 10TeV ; (2.95)

far below what phenomenologically acceptable.
As proposed in [30], one way out to this situation would be to consider theories

where the scalar operator dimension d is close to one, namely d D 1 C �. This
would allow, in principle, to maintain a large scale separation while still obtaining
the correct top quark Yukawa. The problem here is that d D 1 is the dimension
of the elementary Higgs field and furthermore it can be shown that the only theory
where d is exactly equal to 1 is the one of a free scalar, which suffers from the
Naturalness problem. This somehow suggests that by taking d D 1 C � we might
run into the risk of reintroducing the Naturalness problem in our construction. More
concretely, the issue comes if we ask ourselves about the scaling dimension of the
scalar operator squared, O2

S , which is the analog of the Higgs mass term in the SM.
If dŒO2

S� < 4, its presence in the Lagrangian reintroduces the Naturalness problem
like for a free scalar where dŒO2

S� D 2. In [38], the following bound was derived

dŒO2
S� � f .d/ ; (2.96)
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where f .d/ is a continuos function and f .1/ D 2. Therefore for d D 1C �

dŒO2
S� � 2CO.�/ ; (2.97)

and we are pushed into the dangerous region dŒO2
S� < 4. Though qualitative and not

completely accurate,13 the above discussion is sufficient to illustrate the difficulties
with the standard technicolor-like approach to fermion mass generation and to
motivate the study of alternative mechanisms.

We now turn to partial compositeness. Also in this case, matter fermions are
introduced as elementary fields external to the composite sector and coupled to the
latter at the high scale ƒUV, with the only possible exception of the right-handed
top quark which might instead be a completely composite state. Leaving aside this
possibility, on which we will return later, the elementary/composite interactions now
read

LInt D �tL

ƒ
dL�5=2
UV

qLOL
F C

�tR

ƒ
dR�5=2
UV

tROR
F C : : : ; (2.98)

plus analogous terms for the bottom and the other quarks. The crucial difference
with the technicolor way is that the interaction terms are linear in the elementary
fields rather than bilinear and correspondingly the composite sector operators OL;R

F
are fermionic rather than scalar. The reason why this setup is called “partial
compositeness” is that the linear couplings give rise, in the IR, to mixings of
the elementary quarks with some composite resonances so that the physical
mass eigenstates are linear combinations of elementary and composite degrees of
freedom. The compositeness fraction, and eventually the Yukawa couplings which
emerge from this mechanism as we will see below, is controlled by the couplings
�tL;R , duly evolved to the IR scale m�. Assuming for simplicity dL;R > 5=214 and
ignoring self-induced contributions to the Renormalization Group evolution, which
become numerically important for dL;R close to 5=2 [22] but do not change the
picture qualitatively, the low-energy couplings are

�tL Œm�� ' �tL

�
m�
ƒUV

�dL�5=2
; �tR Œm�� ' �tR

�
m�
ƒUV

�dR�5=2
: (2.99)

We see that for a large scale separation ƒUV � m� they can remain sizable, thus
generating a large enough top Yukawa, if the operator dimensions are taken to be
close to the critical value dL;R � 5=2.

13For instance, potentially important numerical factors have been ignored in the estimate of
Eq. (2.93) while they could emerge in concrete technicolor-like theories.
14The unitarity bound on fermionic operators is dL;R � 3=2, therefore we might well consider also
the case 3=2 < dL;R < 5=2 [22].
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Partial compositeness is superior to the technicolor way in two respects. First,
there is no known obstruction in having fermionic operators of dimension nearly 5=2
while we saw that d ' 1 for a scalar is problematic. There is no risk of reintroducing
an Naturalness problem because already in the simplest cases where dŒ�2� D 2 dŒ��,
like in the free theory or for gauge theories with a large number of colors, the
operator square jOFj2 has a safely irrelevant dimension equal to 5. Furthermore
the five-dimensional models in anti-de Sitter space do provide explicit examples of
conformal field theories (in the sense that they obey the conformal group algebra
and unitarity) where dimensions close to 5=2 can be realized. Differently from the
scalar operator of dimension one, there can thus not be any first principle obstruction
against dL;R � 5=2.

The second point in favor of partial compositeness concerns the generation of the
flavor hierarchies. With the technicolor approach the small masses of the bottom, the
charm and the other quarks must find a justification in the underlying microscopic
theory, where some selection rule must be at work ensuring an hierarchy among the
�t and �b UV couplings of the different families. These hierarchies are maintained
by the running since all the Yukawa-like operators have the same scaling dimension,
which is dictated by the one of the scalar operator OS. In partial compositeness,
instead, each quark flavor couples to the composite sector through its own set
of fermionic operators OL;R

F;f , each characterized by its own dimensions df
L;R. The

operators in top quark sector are required to have dt
L;R � 5=2 while the others

could have different dimensions. If db; c; :::
L;R � 5=2 D O.1/ > 0 the couplings at m�

are naturally reduced by the running as in Eq. (2.99) and light quark masses are
obtained even if no hierarchy was present in the UV couplings �b; c; ::: � �t. More
details on this mechanism, and on how it could lead to a realistic VCKM matrix and
to the suppression of extra flavor transition among the light quarks, will be reviewed
in Chap. 4.

Partial compositeness means, as mentioned above, that the physical SM particles
are linear superimpositions of elementary and composite degrees of freedom,
namely

jPhys.ii D cos �ijElem.ii C sin �ijComp.ii ; (2.100)

let us see how this works in detail. At the scale m� the strong sector condenses and it
generates, on top of the pNGB Higgs, a set of resonances with typical mass m�. At
least one resonance is expected for each gauge-invariant local operator, in the sense
that each operator is expected to be capable to excite from the vacuum a single-
particle state with the same Lorentz and internal quantum numbers. The fermionic
operators OL;R

F are thus associated, for each family, to fermionic resonances Q and
QT for which

h0jOL
FjQi ¤ 0 ; h0jOR

Fj QTi ¤ 0 ; (2.101)

and similarly for the down-type sector. The resonances are called “partners” and
their basic properties are easily deduced from the equation above. First of all, they
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must carry the same SU.2/L�U.1/Y quantum numbers of the corresponding SM
fields, namely Q and QT are one doublet with 1=6 hypercharge and one singlet with
Y D 2=3, respectively. One hypercharge�1=3 singlet, QB, will also emerge from the
bottom sector. These representations are actually part of larger multiplets because
in composite Higgs the SM group is embedded in an unbroken SO.4/. Second,
the Partner’s mass originates from the strong sector confinement irregardless of the
breaking of the EW symmetry. The partners must thus be endowed with a Dirac
mass term, as opposite to a Majorana one because they are charged, which means
that both chiralities must be present with the same quantum numbers. Fermions of
this kind are said to be “vector-like”.

Finally, and very importantly, the partners carry QCD color because the
fermionic operators must come in color triplets in order to be consistently coupled
with the quarks. This property marks another relevant conceptual difference with
the technicolor approach to fermion masses. In the latter case the composite sector
needs not to carry color and all its constituents might well be assumed to be color
singlets. In partial compositeness this is not possible: the color group must be
present as a global and unbroken SU.3/ symmetry of the composite sector and the
QCD interactions must be introduced by gauging this symmetry through elementary
gluon fields similarly to what we saw in the previous section for the SU.2/L�U.1/Y
group. This has important phenomenological implications on which we will come
back later.

Since the partners are excited from the vacuum by OL;R
F;f , the partial compos-

iteness interactions in Eq. (2.98) makes them mix with the quarks, with a strength
proportional to the IR couplings. The energy dimensionality of the mixing is carried
by the composite sector’s confinement scale m� and the result is also weighted, as
we will discuss in details in the next chapter, by one inverse power of the typical
composite sector coupling g�. The mass terms of the quark/quark-partners system
are estimated to be

LL
Mass D �m�QQ � �fL

g�
m� .qLQC h:c:/ ;

LR
Mass D �m� QT QT � �fR

g�
m� .tR QT C h:c:/ : (2.102)

Even if we did not indicate it explicitly, the �fL;R couplings in the above equation
are clearly the ones evolved to m� according to Eq. (2.99). However from the
low-energy viewpoint we can ignore their microscopic origin and regard them as
free input parameters. The mass matrices are easily diagonalized leading to two
massless Eigenstates, which we identify with the physical qL and tR quarks, plus
heavy resonances. The light states are partially composite as in Eq. (2.100) with
compositeness fractions

sin � f
L D

�fLp
g2� C .�fL/

2
' �fL

g�
; sin � f

R D
�fRp

g2� C .�fR/
2
' �fR

g�
: (2.103)
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Fig. 2.3 Yukawa couplings
generation in partial
compositeness, under the
supplementary hypothesis of
VMD as explained in the text

In the second set of equalities we took the limit �fL � g�, which is most likely
appropriate for the light flavors but not necessarily so for the top quark.

We are finally in the position to estimate the Yukawa couplings, out of which
the SM particles eventually acquire their mass after EWSB. The Q and QT partners
couple to the Higgs with coupling strength g� and this gives rise, after the rotation
to the mass basis, to Yukawa couplings of the massless eigenstates which are
proportional to the left- and right-handed compositeness fractions. As depicted in
Fig. 2.3 the Yukawas are given by

yf D g� sin � f
L sin � f

R '
�fL�fR

g�
: (2.104)

Light SM particles, with small Yukawas, are thus characterized by small �’s and
thus by a tiny compositeness fraction sin � f

L;R � 1 while the top is obliged to be
composite to a large extent in order to obtain its large Yukawa.

This concludes our first illustration of partial compositeness. Though qualitative,
it should be sufficient to transmit the general idea. However it is important to stress
that our discussion, and in particular the derivation of the Yukawa couplings in
Eq. (2.104), is not only qualitative but it also relies on one extra assumption which
is not intrinsic of partial compositeness and could have been avoided. Namely, the
estimate (2.104) is based on the idea that the only interactions of the elementary
degrees of freedom with the Higgs are the ones mediated by the mixing with the
composite resonances. Otherwise, extra contributions to the Yukawa would have
been present in Fig. 2.3 from contact interactions involving the elementary states
directly. This might be motivated by an analogy with hadron physics, where it is
known that the interactions of the photon are mostly driven by the mixing with
a resonance of appropriate quantum numbers, the � meson. This is the so-called
Vector Meson Dominance (VMD) hypothesis which we might generalize in the
present context to the dominance of the partner’s exchange in the interaction of
the elementary fields with the composite sector. However, VMD is not a robust and
theoretically well understood feature and we should not take it too seriously.15 It
is thus important to remark that Eq. 2.104 does not rely on VMD. The reader will
easily realize this after reading Chap. 3.

15Nevertheless, as stressed in [39], it might still be a convenient simplifying assumption for the
study of composite Higgs models.
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2.4.2 Higgs Couplings to Fermions

Now that the general idea is clear, let us see how to implement partial compositeness
concretely in the composite Higgs framework. We will show how sharp leading-
order predictions can be obtained for the physical Higgs couplings to fermions.
However, differently from the gauge boson couplings in Eq. (2.38) which we saw
to be model-independent and completely determined by the choice of the coset,
the fermion interactions depend on one extra model-building assumption related
with the detailed implementation of partial compositeness. The simplest and most
common options will be discussed in turn.

In partial compositeness the quarks interact with the composite sector through
fermionic operators OL;R

F as in Eq. (2.38). In order to make quantitative predictions
more details must be specified on the nature of those operators. In particular, we do
need to specify their representation under the SO.5/ global group. Notice that the
full SO.5/, irregardless of being spontaneously broken to SO.4/, is what matters
here because it must be kept in mind that the elementary/composite interactions
were originally written at the highƒUV scale, far above the one where spontaneous
breaking occurs. At that scale the operators are classified into full SO.5/multiplets.
Stated differently, the UV operators are made of the strong sector constituents of
the underlying microscopic theory, for which SO.5/ is still an unbroken flavor
symmetry and particles are grouped in SO.5/ representations. Choosing the SO.5/
representations of OL;R

F is the model-building ambiguity we were referring to in the
previous paragraph. A priori, any complicated and reducible representation might
be considered. However the only mixing that matters in the IR is the one with
the operator of lowest dimension, given that the effect of the others is washed
out by the running. This singles out a unique irreducible representation, barring
the implausible possibility that the strong sector contains several multiplets with
accidentally comparable scaling dimensions. A case-by-case study of the irreducible
representations, starting from the smallest multiplets which are more likely to have
low energy dimension, is thus sufficient to cover all the plausible theoretical options.

The operator multiplets must be such as to contain the SM quarks representa-
tions, 21=6, 12=3 and 1�1=3, when decomposed under the EW group GEW. These
components of the multiplet are the only ones that actually participate in the elemen-
tary/composite interactions. However, it turns out that no such representation exists
if GEW is entirely embedded in SO.5/. An extension of the global symmetry group
of the composite sector is required in order to implement partial compositeness. The
simplest possibility is to add a new unbroken U.1/X factor, extending the original
breaking pattern SO.5/! SO.4/ to16

SO.5/ � U.1/X ! SO.4/� U.1/X : (2.105)

16Partial compositeness requires, as described in the previous section, one further extension by an
unbroken color SU.3/c group under which the fermionic operators are triplets. The complete group
is thus SO.5/�U.1/X�SU.3/c.
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In the scheme we had in mind until now, which was introduced in Sect. 2.2.2, GEW

was embedded in the unbroken SO.4/ D SU.2/L�SU.2/R and the hypercharge
was provided by the third SU.2/R generator, Y D T3R. We now instead give to
the hypercharge also one component along the newly introduced U.1/X generator,
namely

Y D T3R C X : (2.106)

In practice, this means introducing a new term in the elementary/composite
interactions of Eq. (2.67), namely to take17

Lgauge
int D A�;AJ�;A C X�J�X ; (2.107)

where J�X is the U.1/X global current and X� is the associated source field. The
physical value of the new source is

X� D g0B� ; (2.108)

where B� is the hypercharge field. B� also enters in the T3R term of A� (2.68) and
therefore it couples with Y as required by Eq. (2.106).

This might seem a radical deformation of our setup, however it is not because
U.1/X is unbroken and thus it does not lead to a new Goldstone. Furthermore it
commutes with SO.5/ and therefore the bosonic fields whose dynamics we have
been studying so far, namely the Higgs and the gauge fields, are all neutral objects.
All the derivations of the previous sections, the definition of the CCWZ d and e
symbols and their properties are unaffected by the extension of the group and hold
in exactly the same way. The presence of the U.1/X must of course be taken into
account when dealing with charged fields, in particular the covariant derivative of
Eq. (2.87) should be supplemented by a term with the source X� in order to respect
local U.1/X invariance.

We now return to our problem of identifying suitable representations for the
fermionic operators. The simplest one is the 5, let us thus start from the case in
which the OL;R

F , namely those that mix with the elementary qL and tR as in Eq. (2.98),
are part of a fiveplet with an appropriate choice, X D 2=3, of the U.1/X charge.
When decomposed under SO.4/, the fiveplet splits into a singlet plus one fourplet
4 D .2; 2/, which in turn leads to two SU.2/L doublets of opposite T3R charges as
shown in section “The SO.4/ Algebra” in the Appendix. Given our new definition
of the hypercharge (2.106), the 52=3 decomposes under GEW as

52=3 ! 42=3 ˚ 12=3 ! 27=6 ˚ 21=6 ˚ 12=3 : (2.109)

17An analogous term gS Ga�Ja
c has to be introduced for the gluon fields G�; a, coupled to the currents

of the SU.3/c color group introduced in Footnote 16.
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The two last terms could couple to qL and to tR respectively. The easiest one is the tR
coupling. The fermionic operator, .OR

F/I , is endowed with a fiveplet index I but the
only component which couples to tR is the singlet embedded in the last entry I D 5.
Nevertheless, it is convenient to express the interaction as

LtR
int D �tR tR

�
OR

F

�
5
C h:c: D �tR

�
TR
�I �OR

F

�
I C h:c: ; (2.110)

in terms of an incomplete fiveplet

TR D f0; 0; 0; 0; tRgT ; (2.111)

which we denote as the embedding of tR in the 5. Notice that the interaction has
been written in a shorthand notation in which �tR represents the coupling strength
at the IR and the powers of m� needed to match energy dimensionality have been
reabsorbed in the operator normalization. The “T” symbols is just the transpose,
needed because we want to work with column vectors.

The rewriting in terms of TR is extremely useful to read the implications of
the symmetries on the elementary fermions interactions. Suppose one is willing
to compute the effective Lagrangian for the SM fermions, the gauge and the Higgs
fields, obtained by integrating out the composite sector dynamics and ignoring the
virtual effects from elementary fields exchange, which could be possibly added on
top. The fact that TR is an incomplete multiplet is irrelevant for this calculation,
we might formally uplift it to a complete multiplet of external source fields and
eventually set it to its physical form by Eq. (2.111). The idea is exactly the one
we introduced in Sect. 2.3.2 to deal with the elementary gauge fields. But if TR is
regarded as a complete multiplet we can consider transforming it under the global
group and its effective Lagrangian must stay invariant. The transformation must
clearly be the same one of OR

F in order for the interaction to be formally invariant.
Therefore under SO.5/

.TR/I ! g J
I .TR/J ; (2.112)

and the U.1/X charge is equal to 2=3. In order to write down invariant Lagrangians
by employing the general CCWZ construction it is convenient to “dress” the source
with the Goldstone matrix and to define the following objects

˚
T4

R; T1
R

�T D UŒ˘��1  TR : (2.113)

This dressing procedure is fully analog to the one we adopted for the gauge source
in Eq. (2.69): by multiplying with U�1 we turn an index transforming with g into
one transforming with hŒ…I g�. The latter can be eventually contracted, together
with all the other CCWZ objects defined in Sect. 2.3, by respecting the local SO.4/
symmetry and the result will be automatically invariant under the full SO.5/. Notice
that hŒ…I g� is the exponential of unbroken SO.4/ generators only, for which we
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took a block-diagonal form. Therefore h itself is block diagonal, with the first 4 � 4
block made of an SO.4/ rotation and “1” in the remaining entry. The two objects
defined above, T4

R and T1
R, thus belong to two distinct SO.4/ representation, namely

T4
R 2 42=3 ; T1

R 2 12=3 ; (2.114)

with 2=3 U.1/X charge. They can be employed independently in the construction of
invariants.

We now turn to the qL coupling. The corresponding operator, .OL
F/I , is still

an SO.5/ fiveplet with X D 2=3, but it is not necessarily related with .OR
F/I .

Two independent operators might well exist in the composite sector, characterized
by different scaling dimensions dL ¤ dR. Furthermore, the opposite chirality
components of OL

F and OR
F participate to the mixing, namely the right-handed

chirality for OL
F, which mixes with qL, and the left-handed one for OR

F . If the
composite sector does not respect the parity symmetry the two chiralities correspond
to independent operators. If on the contrary the composite sector does respect parity
we might be entitled to regardOL

F andOR
F as the two components of one single Dirac

operator and in this case dL D dR. The discussion which follows is independent of
which of the two options is realized.

In very much the same way as for the tR we write the qL interaction as

LqL
Int D �tR

�
QtL

�I �OL
F

�
I
C h:c: ; (2.115)

where QtL is again an incomplete multiplet, this time given by

QtL D
1p
2
f�i bL; �bL; �i tL; tL; 0gT : (2.116)

The qL doublet is embedded in the SO.4/ fourplet components of the fiveplet
according to Eq. (2.161), it corresponds to the T3R D �1=2 doublet ‰�. Exactly
like for TR (2.113), we can act on QL with the Goldstone matrix and obtain two new
SO.4/ multiplets

Q4
tL 2 42=3 ; Q1

tL 2 12=3 ; (2.117)

which we will employ in the construction of the invariants.
The leading order invariants are the ones made of two source fields and no

derivatives. These are O.p0/ operators in the counting we introduced in Sect. 2.3.
The contraction of two TR or of two QtL sources vanishes because of chirality and
one is left with mixed QtL -TR terms. Two invariants might be formed, a priori, by
contracting Q4

tL
with T4

R and Q1
tL

with T1
R, however the two are not independent

because of the following relation

�
Q

4
tL

�i �
T4

R

�
i
C Q

1
tL

T1
R D

�
QtL

�I
h
U i

I U
 J
i C U 5

I U
 J
5

i
.TR/J

D �QtL

�I
.TR/I D 0 ; (2.118)
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which vanishes because QtL and TR are orthogonal. We thus find a unique effective
operator with two elementary fermions and no derivatives, which leads to a
generalized top Yukawa Lagrangian

Lt
Yuk D �ct �tL�tR

g2�
m�Q

1
tL T1

R C h:c:

D �ct �tL�tR

g2�
m�

1

2
p
2jHj sin

2
p
2jHj
f

qLHctR C h:c: (2.119)

where Hc D i �2H�. The parametrization of the operator coefficient in the equation
above is actually irrelevant for the results which follow, however it requires some
explanation. The QL and TR sources interact with the composite sector only in
combination with the coupling strength �tL and �tR , respectively. Therefore each
source insertion is necessarily accompanied by one power of the corresponding
coupling. The composite sector scale m� provides the energy dimensionality of the
operator and ct is an order one free parameter. The justification of the 1=g2� factor,
which is similar to one we encountered in Eq. (2.102), is instead more complicated
and it is postponed to the next chapter.

Equation (2.119) is an infinite series of operators with more and more insertions
of the Higgs field, each weighted by the Higgs decay constant f . The leading
operator is just the dimension 4 SM up-type Yukawa interaction. All the others,
starting from d D 6, provide corrections to the Higgs–top coupling with respect
to the SM. This whole set of interactions is controlled, at fixed f , by a single
multiplicative parameter which however is not free because we still have to impose
the constraint of the top quark mass. When the Higgs is set to its VEV, Eq. (2.119)
becomes the top mass term with

mt D ct �tL�tR

g2�
m�
p
.1 � /p

2
: (2.120)

By trading the prefactor for mt and going to the unitary gauge the generalized
Yukawa Lagrangian in Eq. (2.119) becomes

Lt
Yuk D �

mt

2

1p
.1 � / sin

2.V C h/

f
tt

D �mttt � kt
mt

v
h tt � c2

mt

v2
h2ttC : : : (2.121)

It provides the top mass term, plus a set of top interactions with the physical Higgs.
The first one is a SM-like coupling, but with a modified strength

k5
t �

gcomp
htt

gSM
htt

D 1 � 2 p
1 �  : (2.122)
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The result is labeled by the superscript “ 5” because it relies on our choice of
embedding the operators in the fiveplet. The second interaction is a dimension 5
vertex with two Higgs bosons, obviously absent in the SM, with coefficient

c5
2 D �2 : (2.123)

As expected on general grounds, the couplings reduce to the SM ones in the limit
 ! 0. Namely k5

t ! 1 and c5
2 ! 0.

The bottom quark sector, namely the interactions needed to generate the bottom
mass and Yukawa couplings, are introduced in complete analogy with the top ones.
We consider, on top of Eq. (2.98), two further elementary/composite couplings

Lb
Int D

�bL

ƒ
db

L�5=2
UV

qLObL
F C

�bR

ƒ
db

R�5=2
UV

bRObR
F ; (2.124)

where ObL
F and ObR

F are, respectively, in the 21=6 and 1�1=3 of the SM group. Notice

thatObL
F has the same SM quantum numbers of the corresponding operator in the top

sector. In spite of this, the two are independent objects, a priori. The bottom sector
operators can be embedded in a 5�1=3 of SO.5/ � U.1/X , which decomposes as

5�1=3 ! 4�1=3 ˚ 1�1=3 ! 21=6 ˚ 25=6 ˚ 1�1=3 ; (2.125)

under GEW. The interaction (2.124) is rewritten as

Lb
int D �bL

�
QbL

�I
�
ObL

F

�
I
C �bR

�
BR
�I
�
ObR

F

�
I
; (2.126)

where, for shortness, the dimensionful normalization has been reabsorbed in the
operators. The two new source fields QbL and BR are given by

QbL D
1p
2
f�i tL; tL; i bL; bL; 0gT ;

BR D f0; 0; 0; 0; bRgT : (2.127)

Differently from the one for the top in Eq. (2.116), the QbL source is chosen to
project on the T3R D 1=2 doublet in the decomposition (2.161).

By acting with the inverse of the Goldstone matrix we turn the sources into SO.4/
multiplets

Q4
bL
2 4�1=3 ; Q1

bL
2 1�1=3 ;

B4
R 2 4�1=3 ; B1

R 2 1�1=3 ; (2.128)
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out of which we can form invariants. Contractions with the top sector sources are
forbidden by U.1/X and the only invariant is found to be

Lb
Yuk D �cb�bL�bR

g2�
m�Q

1
bL

B1
R C h:c:

D �cb�bL�bR

g2�
m�

1

2
p
2jHj sin

2
p
2jHj
f

qLHbR C h:c: (2.129)

This generalized down-type Yukawa Lagrangian gives mass to the bottom quark.
After trading the prefactor for mb and going to the unitary gauge

Lb
Yuk D �

mb

2

1p
.1 � / sin

2.V C h/

f
bb

D �mbbb � kb
mb

v
h bbC : : : (2.130)

where kb, the modification of the bottom–Higgs coupling with respect to the SM is
found to be

k5
b �

gcomp
hbb

gSM
hbb

D 1 � 2 p
1 �  : (2.131)

Additional higher dimensional vertices, such as h2bb, are also present in Eq. (2.130).
However they are suppressed by the small bottom mass and thus, differently from
the h2tt coupling in Eq. (2.121), hardly play a relevant phenomenological role.

The discussion proceeds along similar lines for any representation in which we
might take the fermionic operators to transform. An “economical” choice is the
spinorial 4 of SO.5/ defined in section “Explicit CCWZ for SO.5/=SO.4/” in the
Appendix. From the explicit form of its generators (2.170) we see that it decomposes
as 4 D .2; 1/ ˚ .1; 2/ under SO.4/, therefore if we assign to it a U.1/X charge
X D 1=6 it will simultaneously contain all the SM representations of one complete
quark family, namely

41=6 ! .2; 1/1=6 ˚ .1; 2/1=6! 21=6 ˚ 12=3 ˚ 1�1=3 : (2.132)

The elementary field embeddings become now

QtL D QbL D ftL; bL; 0; 0gT ;
TR D f0; 0; tR; 0gT ;
BR D f0; 0; 0; bRgT ; (2.133)

out of which a total of 6 CCWZ tensors, 3 of which in the .2; 1/1=6 and the others
in the .1; 2/1=6, can be constructed by acting with the inverse of the Goldstone
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matrix. Clearly, the Goldstone matrix in the spinorial, reported in Eq. (2.174), has
to be employed. Out of the 4 possible invariants only two are independent because,
similarly to what we saw happening in Eq. (2.118) for the fiveplet, the sum of the
.2; 1/ and of the .1; 2/ self-contractions vanishes. This is actually a general rule,
which has to do with the fact the sum of the contractions among the different SO.4/
multiplets reconstructs one SO.5/ invariants from which the Goldstone matrix,
which acts as an SO.5/ transformation, systematically cancels. The net result is that
only two invariants exist, corresponding to up- and down-type generalized Yukawas

Lt
Yuk D �i ct �tL�tR

g2�
m�Q

.2;1/
tL  TR

.2;1/ C h:c:

D �ct �tL�tR

g2�
m�

1

2jHj sin

p
2jHj
f

qLHctR C h:c:

Lb
Yuk D �icb�bL�bR

g2�
m�Q

.2;1/
bL
 BR

.2;1/ C h:c:

D �ct �tL�tR

g2�
m�

1

2jHj sin

p
2jHj
f

qLHbR C h:c: (2.134)

where the dot stands for the doublet indices contraction. By trading the pre-
factor for the physical top and bottom masses, going to the unitary gauge and
Taylor-expanding the Lagrangian we obtain the top and bottom Yukawa couplings
modification and the coefficient of the h2tt operator

k4
t D k4

b D
p
1 �  ; c4

2 D �


2
: (2.135)

As anticipated, the predicted pattern of fermion coupling modification is different
than the one we encountered in the case of the 5.

The scenarios described above, with fermionic operators in the 5 and in the
4, correspond to the most popular Minimal Composite Higgs Models, denoted as
MCHM5 and MCHM4, respectively. The MCHM4 was first proposed in [11] but
subsequently abandoned in favour of the MCHM5 [40] because it was found, as
reviewed in the following chapters, that it leads to a large and phenomenologically
unacceptable correction to the Z boson coupling to the left-handed bottom. The
MCHM4 and the MCHM5, aside from the fact that they predict different modified
couplings, share two peculiar features which are not representative of the generic
situation one might encounter for other representations. The first peculiarity is that
the Higgs couplings are uniquely predicted in terms of . This came because in
both cases we found only one invariant operator for the top and one for the bottom
sector, the theory was thus completely specified in terms of two parameters only
which we traded for mt and mb. There exist representations for which this is not
the case. Suppose for instance embedding the top sector operators in an adjoint of
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SO.5/ with X D 2=3, the SO.4/�U.1/X decomposition of this representation is

102=3 ! .3; 1/2=3 ˚ .1; 3/2=3 ˚ .2; 2/2=3 : (2.136)

This is a viable representation since qL can be embedded in the bidoublet and tR
in one of the components of the .1; 3/2=3. After being dressed with the Goldstone
matrix, the QL and TR sources give rise, by the above decomposition, to three
separate irreducible representations which we can use to write down the effective
Lagrangian. Three singlets can thus be formed by contracting QL with TR and only
one combination of those is trivial because it corresponds to a full SO.5/ invariant.
We are thus left with two independent operators in the top sector and thus with two
free parameters.18 One combination is fixed by the top mass but the other remains
free and affects the Higgs couplings which are no longer predicted.

The second peculiarity is that in both the MCHM5 and the MCHM4 scenarios
the physical Higgs couplings to top and bottom are modified by the same amount
with respect to the SM, namely kt D kb. This is obviously not a general feature, the
simplest counterexample is to consider to different SO.5/ representation for the top
and the bottom sectors. If for instance we had taken the top sector operators are in
the 5 but the bottom ones in the 4 we would have found kt D k5

t ¤ kb D k4
b. Generic

or not, the equality of top and bottom couplings modification is a robust feature
of the MCHM4;5 models, which we can exploit for a fast and easy comparison
with the experimental measurements of the Higgs boson couplings. One way in
which those experimental results are presented are Confidence Level (CL) curves
on the kV–kF plane, where kV is the modification of the Higgs coupling to vectors
and kF is a universal rescaling of the coupling to fermions with respect to the SM.
Since the current experimental results are dominated by the top and bottom Yukawa
couplings while the sensitivity to leptons and light quarks couplings is extremely
mild or absent, we can interpret kF as kF D kt D kb, without worrying about the
other fermions. By combining our predictions for kF as a function of  with kV

obtained in Eq. (2.38) we can draw a line on the kV–kF plane for each of the two
models and compare with the CL curves. The result, displayed in Fig. 2.4, shows
that relatively large values of , above around  & 0:2 are excluded by the Higgs
data. As we will see in the following chapters, these limits are barely competitive
with other constraints from the LEP electroweak precision tests and from direct
resonance searches at the LHC, but they are sufficient to give an idea of the allowed
parameter space of the composite Higgs models.

For reasons related with the radiative generation of the Higgs potential which
will become clear in the following chapter, one last case which is worth discussing
is when the top sector operator OtL

F is in a 142=3 of SO.5/ and OtR
F in a singlet 12=3.

18By making extra assumptions on the composite sector the number of parameters might be
reduced back to one. For instance, if we postulate that the composite sector is invariant under a
PLR parity which interchanges left and right SO.4/ generators the operators constructed from the
.3; 1/ and the .1; 3/ would be obliged to have the same coefficient.
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Fig. 2.4 Fit of the Higgs
coupling strength to the
gauge bosons (kV ) and
fermions (kF) obtained by the
ATLAS (red contours) [41]
and CMS Collaborations
(blue contours) [42] from the
combination of the 7 and
8TeV LHC data. The solid
black lines show the
predictions in the MCHM5;4

models for different values
of 

The setup could be completed by different choice of representations in the bottom
sector, which will turn out to have a mild impact on the Higgs potential. The 14 is
the symmetric traceless tensor product of 2 fiveplets, thus it decomposes in SO.4/
in terms the corresponding 2-index tensor, the 9 D .3; 3/, plus one fourplet sitting
on the last line and column and one singlet in the 5-5 entry, namely

142=3 ! .3; 3/2=3 ˚ .2; 2/2=3 ˚ .1; 1/2=3 : (2.137)

The qL doublet mixes, as in previous cases, with the .2; 2/2=3, its embedding in the
.QtL/IJ source tensor reads

QtL D
1p
2

2
666664

0 0 0 0 �i bL

0 0 0 0 � bL

0 0 0 0 �i tL
0 0 0 0 tL
�i bL � bL �i tL tL 0

3
777775
: (2.138)

When dressed with the Goldstone matrix, the 142=3 splits into three irreducible
representations in accordance with the decomposition above, but the only one that
matters is the singlet

QtL
1 D �UŒ…�
�

5I

�
UŒ…�


�
5J

QtL
IJ D 1p

2jHj sin
2
p
2jHj
f

.Hc/
  qL ; (2.139)

which we will combine with the TR to form an invariant operator.

Lt
Yuk D �ct �tL�tR

g2�
m�Q

1
tL

TR C h:c ; (2.140)
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where TR D tR is the trivial embedding of tR in the singlet. With the usual procedure
the modified Higgs couplings are easily found to be

k14
t D

1 � 2 p
1 �  ; c14

2 D �2 : (2.141)

The results happens to coincide with the one obtained for the 5.
One further reason for being interested in the 14 ˚ 1 pattern is that it can be

also interpreted as describing the case of a completely composite tR field, emerging
directly from the composite sector rather than originating in the elementary one.
This is possible because the tR couples to an operator in the 12=3 of SO.5/�U.1/X ,
therefore its interaction

LtR
int D �tR tROR

1 C h.c. ; (2.142)

is perfectly invariant under the composite sector symmetry group, provided the tR
field is interpreted as a composite sector bound state in the 12=3 of the unbroken
group SO.4/�U.1/X. Also, being an SO.4/ singlet, the CCWZ kinetic term for such
a resonance (see Eq. (2.88)) would contain no e� term and it would just coincide
with the SM one we assumed in Eq. (2.90).19 Therefore all the terms we wrote
down for tR could have come from the composite sector, compatibly with all its
symmetries. The difference between the elementary and composite tR interpretation
of the 14 ˚ 1 setup is purely quantitative and resides in the expected strength of
�tR . In the former case, �tR is an elementary sector coupling and thus we take it
smaller than the composite sector one: �tR < g�. In the latter one, �tR is naturally
of order g�. By treating it as a free parameter and making no a priori assumption on
its value we can smoothly interpolate among the two interpretations. In particular
in Eq. (2.140) we can take �tR � g� showing (using the relation m� D g�f which
we will discuss in the next chapter) that in the composite tR case the left-handed
coupling must be �tL � yt in order to reproduce the top quark Yukawa coupling yt.
These considerations will be important in when we will study the generation of the
Higgs potential.

Appendix

The SO.4/ Algebra

The Lie algebra of SO.4/ is the six-dimensional space of traceless Hermitian
imaginary 4 � 4 matrices that define the fundamental (the 4) representation of the
group. For applications to composite Higgs the most convenient choice of the Lie

19The gauging of U.1/X leads to an additional term in the resonance covariant derivative in
Eq. (2.87) which precisely reproduce the SM gauge interaction.



64 2 Goldstone Boson Higgs

algebra basis is the one that makes explicit its connection with the algebra of the
chiral group SU.2/L�SU.2/R, which has also dimension 6. The two groups are
indeed locally isomorphic, i.e.

SO.4/ ' SU.2/L � SU.2/R ; (2.143)

which means that they have the same algebra. In order to prove the isomorphism
and to derive the SO.4/ basis we proceed as follows. Be

#„
… a real vector in the 4 of

SO.4/, its four components are in one-to-one correspondence with the elements of
a 2 � 2 pseudo-real matrix

† D 1p
2

�
i �˛…

˛ C �2…
4
� D 1p

2
� i…

i ; (2.144)

where ˛ D 1; 2; 3, �˛ are Pauli matrices and

� i D fi �˛;�2g : (2.145)

The �’s obey the following normalization, completeness and reality conditions

TrŒ�
i � j� D 2 ıij ;

4X
iD1
.�



i /

b
a .� i/

d
c D 2 ıd

aı
b
c ;

.� i/
� D �2� i�2 ; � i�



j � � j�



i D 2 � i�



j � 2 ıij�2 ; (2.146)

from which † is immediately seen to be pseudo-real, i.e.

†� D �2†�2 : (2.147)

The chiral group acts on † by matrix multiplication,

† ! gL†g
R; (2.148)

and it preserves the pseudo-reality condition (2.147). Therefore the matrix †

offers a consistent representation of the chiral group, which we call a pseudo-
real bidoublet .2; 2/ with a self-explanatory notation. In order to demonstrate
the local isomorphism among the two groups we consider an infinitesimal chiral
transformation on † and we show that it has the same effect as an SO.4/ rotation
on the

#„
… vector. This is because

Tr
�
†
†

 D j #„…j2 : (2.149)

The trace is invariant under Eq. (2.148), which means that the norm of
#„
… is

unchanged by the chiral transformations. Since SO.4/ contains the most general
norm-preserving infinitesimal transformation of a four-component vector, this
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demonstrates that any chiral transformation is an element of SO.4/ and therefore the
chiral group algebra is contained in the SO.4/ one. However no sub-algebra exists,
aside from the full algebra itself, with the same dimensionality of the original one.
The isomorphism (2.143) is thus proven.

Let us turn to the determination of the SO.4/ generators. In light of the discussion
above we can split them into two sets ta D ft˛L ; t˛Rg with ˛ D 1; 2; 3. Each set obeys
SU.2/ commutation relations and the two sets commute in accordance with the
SU.2/L�SU.2/R algebra, namely

h
t˛L ; t

ˇ
L

i
D i�˛ˇ� t�L ;

h
t˛R; t

ˇ
R

i
D i�˛ˇ� t�R ;h

t˛L ; t
ˇ
R

i
D 0 : (2.150)

Those generators, in the fundamental 4 representation, are easily extracted from the
infinitesimal variations

ıL† D i ıL
˛

�˛

2
† ;

ıR† D � i ıR
˛†

�˛

2
; (2.151)

under chiral transformations gL;R ' �C iıL;R
˛ �˛=2. The corresponding variations of

#„
… have the form

ıL
#„
… D i ıL

˛t˛L
#„
…;

ıR
#„
… D i ıR

˛ t˛R
#„
…; (2.152)

from which, by matching with Eq. (2.151), we obtain
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: (2.153)

The generators obey the commutation relations in Eq. (2.150) and they are subject
to the normalization and completeness relations

Tr
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D Tr

h
t˛RtˇR
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2
�ijkl ; (2.154)

where �ijkl is the anti-symmetric Levi-Civita tensor in four dimensions.
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In composite Higgs models the SU.2/L group is identified with the SM left-
handed group and the hypercharge U.1/Y is the third SU.2/R generator up to the
U.1/X charge (see Sect. 2.4.2), which however vanishes for the Higgs field. In this
case the four real components of the .2; 2/ representation defined in Eq. (2.144) form
one complex SM-like Higgs doublet with 1=2 hypercharge. This is immediately
verified by noticing that †, thanks to pseudo-reality, can be written as

† D .Hc; H/ ; (2.155)

in terms of the doublet H and of its conjugate Hc D i�2H�. By remembering that
Hc is also a doublet but with �1=2 hypercharge it is immediate to verify that the
action of the chiral group in Eq. (2.148) matches the expected Higgs transformation
rules under the SU.2/L�U.1/Y . By the definition (2.144) the H components are
expressed as

H D
�

hu

hd

	
D 1p

2

�
…2 C i…1

…4 � i…3

	
; (2.156)

in terms of the fourplet fields …i. Conversely, one real SO.4/ fourplet or, equiv-
alently, one pseudo-real .2; 2/, can be rewritten in terms of one complex Higgs
doublet as in Eq. (2.28). This is to say that the real SO.4/ fourplet decomposes as

4 D .2; 2/ ! 21=2; (2.157)

under the SU.2/L�U.1/Y subgroup.
Similar considerations hold for the complex SO.4/ fourplet, which we will

encounter in the main text when dealing with the SM matter fermions. Its complex
components  i can be traded for the elements of a generic 2 � 2 matrix

‰ D 1p
2

�
 4 C i �˛ 

˛
� D 1p

2
� i 

i ; (2.158)

which transforms in the .2; 2/ representation as in Eq. (2.148). Since it does not
obey the pseudo-reality condition we dub it a complex bidoublet .2; 2/c. Under the
SU.2/L�U.1/Y subgroup the two columns of ‰ form two doublets with opposite
˙1=2 Y charge, namely

‰ D 1p
2

�
 4 C i 3  2 C i 1

� 2 C i 1  4 � i 3

	
� .‰�; ‰C/ : (2.159)

This corresponds to the decomposition

4c D .2; 2/c ! 21=2 ˚ 2�1=2 : (2.160)
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From Eq. (2.159) we can easily read the up and down components of the two
doublets in terms of the fourplet fields. Conversely, the fourplet components are
written in terms of ‰u;d

˙ as

#„
 D 1p

2
f�i‰uC � i‰d�; ‰uC �‰d�; i‰dC � i‰u�; ‰dC C‰u�gT : (2.161)

The above equation is often referred to as the embedding of the two doublets in the
complex 4.

Other relevant representations are the .2; 1/ and the .1; 2/. As the notation
suggests these are doublets under one of the chiral SU.2/ factors and they are
invariant under the other one. Their SU.2/L�U.1/Y decomposition is obviously

.2; 1/! 20 ;

.1; 2/! 11=2 ˚ 1�1=2 : (2.162)

The adjoint of SO.4/, the 6, also deserves some comment. Given that the algebra
splits into the tensor product of two SU.2/’s, the adjoint is a reducible representation
and it is represented, in SU.2/L�SU.2/R notation, as

6 D .3; 1/˚ .1; 3/ (2.163)

where two terms correspond to the generators t˛L and t˛R, respectively. The decompo-
sition reads

.3; 1/! 30 ;

.1; 3/! 10 ˚ 11 ˚ 1�1 : (2.164)

The last representation which is worth mentioning is the 9 D .3; 3/. It corresponds
to a real 3 � 3 matrix with the chiral group acting in the spin one representation
on the two sides, or to the symmetric traceless tensor product of two fourplets. It
decomposes as

9 D .3; 3/ ! 30 ˚ 31 ˚ 3�1 : (2.165)

Explicit CCWZ for SO.5/=SO.4/

The abstract definitions of Sect. 2.3, where the CCWZ construction is illustrated for
a generic G=H coset, become concrete and fully explicit in the particular case of the
minimal coset SO.5/=SO.4/.

The SO.5/ generators, reported explicitly in Eq. (2.25) for the fundamental 5
representation, can be split into an unbroken subset Ta which represents the SO.4/
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subgroup and obeys the commutation relations in Eq. (2.150) and a broken one OTi

associated to the four Goldstone bosons, with commutation relations

h
Ta; OTi

i
D i f ai

j
OTj D OTj .ta/ i

j ;

h OTi; OTj
i
D i f ij

aTa D .ta/ji Ta ; (2.166)

where ta D ft˛L ; t˛Rg are the SO.4/ generators in the 4 as in Eq. (2.153). The
generators in the 5, defined in Eq. (2.25), obey normalization and completeness
conditions

Tr
�
TATB

 D ıAB ;

10X
AD1

�
TA
�

IJ

�
TA
�

KL
D �1

2
.ıIKıJL � ıILıJK/ : (2.167)

Given the generators, it is not hard to compute the Goldstone matrix in the
fundamental representation

U D ei
p

2
f …i.x/ OTi D

2
664
� �

�
1 � cos

…

f

� #„
…

#„
…T

…2
sin

…

f

#„
…

…

� sin
…

f

#„
…T

…
cos

…

f

3
775 ; (2.168)

in terms of the four real Higgs field components. The complex Higgs doublet
notation can be reached afterwards by substituting Eq. (2.28). The Goldstone matrix
considerably simplifies in the unitary gauge (2.34) and thus it is worth reporting it

U D
UG

2
66664

�3
E0 0

E0T cos
V C h

f
sin

V C h

f

0 � sin
V C h

f
cos

V C h

f

3
77775 ; (2.169)

where �3 is the 3 � 3 identity matrix and
#„
0 is the three-dimensional null vector.

The Goldstone matrix in the unitary gauge is a rotation in the 4–5 plane of the five-
dimensional space.

As explained in the main text, the Goldstone matrix can be defined in any
representation of the group as the exponential of the appropriate generator matrices.
Above we computed the one in the fundamental and one should worry of how
to obtain the others. For all the representations constructed as tensor product of
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fundamentals, which can thus be expressed as tensors with fiveplet indices, this
is completely straightforward and does not require any additional calculation: the
Goldstone matrix acts by rotating each index with the 5 � 5 matrix U. However
not all the SO.5/ representations are tensor product of fundamentals, the simplest
counterexample is the spinorial, for which the Goldstone matrix needs to be
recomputed. The spinorial has dimension 4 and its generators are

T4
˛
L D

1

2

�
�˛ 0

0 0

	
; T4

˛
R D

1

2

�
0 0

0 �˛

	
;

OTi
4 D

1

2
p
2

"
0 � i

�


i 0

#
; (2.170)

where �˛ denotes the three Pauli matrices and � is defined in Eq. (2.145). The
spinorial can be also regarded as the fundamental of the symplectic group Sp.4/,
which is isomorphic to SO.5/. The generators indeed obey the symplectic condition

�  TA
4 C

�
TA

4

�T � D 0 ; (2.171)

with the antisymmetric unitary matrix

� D ei�ŒT4
2
L�T4

2
R� D

�
i �2 0

0 �i �2

	
: (2.172)

For completeness, we report normalization and completeness relations also for the
spinorial

Tr
�
TA

4 TB
4

 D 1

2
ıAB ;

10X
AD1

�
TA

4

� J

I

�
TA

4

� L

K D
1

4

�
ıL

I ı
J
K ��IK�

JL
�
: (2.173)

The Goldstone matrix in the spinorial is straightforwardly obtained by exponen-
tiating the broken generators and it turns out to be most easily expressed in the
complex doublet Higgs notation rather than in terms of the real fourplet

#„
…. It reads

U4 D ei
p

2
f …i.x/ OTi

4 D

2
664

cos
jHjp
2f
�2 i sin

jHjp
2f

†

jHj
i sin

jHjp
2f

†


jH cos
jHjp
2f
�2

3
775 ; (2.174)
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where † is the pseudo-real bidoublet representation of the Higgs as defined in
Eq. (2.155). The result further simplifies in the unitary gauge

U4 D
UG

2
64

cos
V C h

2f
�2 i sin

V C h

2f
�2

i sin
V C h

2f
�2 cos

V C h

2f
�2

3
75 : (2.175)

Any SO.5/ representation, including the 5, is the tensor product of spinorials (the
conjugate 4 is equivalent to the spinorial itself and its Goldstone matrix is U4 D
U�

4 D ˝U4˝

). The knowledge of U4 thus allows to derive the Goldstone matrix

in any representation.
Let us now turn to the determination of the d� and e� symbols. Those are defined

in Eq. (2.69) in the presence of non-dynamical source gauge fields A�;A, one for each
of the 10 SO.5/ generators. However, only a subset of those sources will be made
physical by giving them a kinetic term, all the others will be eventually set to zero.
The physical sources are the ones in the SM subgroup, which is embedded in the
unbroken SO.4/.20 We can thus split the A�;A’s in unbroken and broken components

A�;A D
n
A�; a D fAL

�;˛; AR
�; ˛g; A�; i D 0

o
; (2.176)

and already set the latter ones to zero while retaining, for the moment, all the
unbroken generator sources. The unbroken sources have been further split in the
two sets that correspond to the two SU.2/ factors of SO.4/ ' SU.2/L � SU.2/R.
The only truly dynamical sources are the ones associated with the four SM gauge
fields, namely we will eventually set

AL
�; ˛ D

n
g W1

�; g W2
�; g W3

�

o
;

AR
�; ˛ D

˚
0; 0; g0B�

�
; (2.177)

in accordance with Eq. (2.68).
The d and e symbols can be straightforwardly computed from the defini-

tion (2.69), or obtained in a somewhat faster way by first classifying the possible
structures which they can contain compatibly with the SO.4/ symmetry. The
result is

d�
i D p2

�
1

…
sin

…

f
� 1

f

� #„
…TD�

#„
…

…2
…i �

p
2

…
sin

…

f
D�…

i ;

eL
�

˛ D AL˛
� �

4

…2
sin2

…

2f
#„
…T i t˛LD�

#„
…;

eR
�

˛ D AR˛
� �

4

…2
sin2

…

2f
#„
…T i t˛RD�

#„
…; (2.178)

20Actually the hypercharge has a U.1/X component introduced in Sect. 2.4.2, which however plays
nor role in the calculation of the d and e symbols.
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where D�
#„
… is the SO.4/ covariant derivative

D�
#„
… D

�
@� � iAL

�; ˛t˛L � iAR
�; ˛t˛R

�
#„
…; (2.179)

not to be confused with the CCWZ covariant derivative introduced in Sect. 2.3.3. We
have split the e�; a symbol in two components associated with the decomposition
6 D .3; 1/ ˚ .1; 3/ of the adjoint in irreducible representations. In the absence
of additional symmetries, the two objects can be employed separately in the
construction of invariants. For instance, it is possible to define two independent
field-strength tensors following Eq. (2.78)

EL
�	

˛ D @�eL˛
	 � @	eL˛

� C �˛ˇ� eL
�; ˇeL

	; � ;

ER
�	

˛ D @�eR˛
	 � @	eR˛

� C �˛ˇ� eR
�; ˇeR

	; � ; (2.180)

in the .3; 1/ and .1; 3/, respectively. In the following we will also occasionally
employ a collective notation Ea

�	 D fEL˛
�	;E

R˛
�	g for the six field-strength tensor

components.
For some practical calculation, especially when willing to switch to the complex

Higgs doublet notation, the d and e objects in Eq. (2.178) are conveniently expressed
in terms of 2 � 2 matrices obtained by contracting them with � and � , namely

d.2/� D di
�� i D

 
1p
2jHj sin

p
2jHj
f
� 1

f

!
@�jHj2
jHj2 † �

p
2

jHj sin

p
2jHj
f

D�† ;

e.2/L � D eL
�

˛ �˛

2
D AL

� C
i

2jHj2 sin2
jHjp
2f

�
†D�†


 � D�††



;

e.2/R � D eR
�

˛ �˛

2
D AR

� C
i

2jHj2 sin2
jHjp
2f

�
†
D�† � D�†


†

; (2.181)

where the Higgs matrix covariant derivative, in accordance with (2.179), is

D�† D @�† � i

2
AL
� †C

i

2
†AR

� ; (2.182)

with AL;R
� D AL;R

�; ˛�
˛=2. Notice that the d� symbol matrix representation is pseudo-

real and those of eL;R
� are Hermitian and traceless, as obvious from the definition.

In the chiral notation, where the SO.4/ rotation gets split into two SU.2/L�SU.2/R
transformations gL and gR, d.2/ and e.2/L;R transform as

d.2/� ! gL  d.2/�  g
R ;
e.2/L � ! gL  .e.2/L � C i@�/  g
L ;
e.2/R � ! gR  .e.2/R � C i@�/  g
R ; (2.183)

i.e. respectively like one bidoublet and two gauge fields.
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Now that the basic objects are known we can straightforwardly apply the general
CCWZ machinery and derive some useful formulas. First, we compute the 2-
derivative non-linear �-model Lagrangian of Eq. (2.72) and verify that it agrees
with the expression reported in the main text. After setting the gauge sources to
their physical value (2.177) we obtain

L.2/ D f 2

4
d�; id

�; i D f 2

8
TrŒ.d.2/� /


d.2/;�� (2.184)

D f 2

2jHj2 sin2
p
2jHj
f

D�H
D�H C f 2

8jHj4
 
2
jHj2
f 2
� sin2

p
2jHj
f

! �
@�jHj2

�2
;

in accordance with the result in Eq. (2.32) obtained for the linear �-model.
We would also like to compute the E�	 field-strength components and the

antisymmetric part of the two-derivative tensor D  d defined in Eq. (2.75), which
we will need in the following chapter. These objects can be obtained directly from
their definitions in Eqs. (2.180) and (2.75), or derived in fast way by employing
the identity (2.82) proven in Sect. (2.3.3). In this second case we proceed by first
computing the “dressed” field-strength tensors F defined in Eqs. (2.79), (2.80),
which in our case consist of 3 CCWZ multiplets in the .3; 1/, .1; 3/ and .2; 2/
representations. Those are rather simple because they contain no derivatives of the
Goldstone fields and read

FL
˛
�	 D cos2

…

2f
AL˛

�	 �
4

…2
sin2

…

2f
#„
…T t˛L.A

R
�	; ˇ tˇR/

#„
…;

FR
˛
�	 D cos2

…

2f
AR˛

�	 �
4

…2
sin2

…

2f
#„
…T t˛R.A

L
�	; ˇ tˇL /

#„
…;

F4
i
�	 D

p
2

…
sin

…

f

�
AL

�	; ˛ i t˛L C AR
�	;˛ i t˛R

�ij
…j ; (2.185)

where AL;R
�	 denote the field-strengths associated with the gauge sources

AL;R
�	

˛ D @�AL;R
	

˛ � @	AL;R
�

˛ C �˛ˇ�AL;R
� ˇ

AL;R
	 � : (2.186)

After setting the sources to their physical values in Eq. (2.177), they reduce to the
familiar W�	 and B�	 SM tensors.

The last object we need in order to apply Eq. (2.82) (since d2r� D 0 for a
symmetric coset) is d2Ad, the adjoint tensor formed out of two d-symbols defined
in Eq. (2.74). In our case it splits in two components

d2L
˛

�	 D di
�.i t˛L/ijd

j
	 ; d2R

˛

�	 D di
�.i t˛R/ijd

j
	 : (2.187)
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The explicit form of d2L;R in terms of … can be easily worked out, however the
expression in terms of the d-symbol provided by the equation above is already the
simplest one for practical calculations. The field-strengths EL;R

�	 and D  dŒ�;	� are,
finally

EL
˛
�	 D FL

˛
�	 � d2L

˛

�	 ;

ER
˛
�	 D FR

˛
�	 � d2R

˛

�	 ;

.D  d/iŒ�;	� D D�di
	 �D	d

i
� D F4

i
�	 : (2.188)

The above formulas can be also obtained by computing E and D  d directly from
their definitions. This provides a non-trivial cross-check of Eq. (2.82). In the matrix
notation, E and D  d become

E.2/L �	 D cos2
jHjp
2f

AL
�	 C

1

jHj2 sin2
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2f

�
†AR

�	†
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�
; (2.189)

where AL;R
�	 D AL;R

�	

˛
�˛=2.

All the formulas above greatly simplify in the unitary gauge, in which

† D V C hp
2

�2 : (2.190)

For the d and e symbols we have
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2 f
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�/ ; (2.191)
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while for E and D  d one finds

E.2/L �	 DUG
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V C h

2f
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�	 C sin2

V C h

2f
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�	 C

i
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Chapter 3
Beyond the Sigma-Model

In the previous chapter we restricted our attention to a specific class of new
physics effects, that we can classify as “non-linear �-model effects”. These are
modifications of the SM driven by the pNGB nature of the Higgs and the
associated non-linear �-model structure of the effective Lagrangian. The non-linear
�-model effects are encapsulated in the generalized Higgs kinetic term and Yukawa
Lagrangians that deliver the SM operators that couple the Higgs to vector bosons
and fermions, plus a series of terms with additional Higgs field insertions weighted
by the inverse of the non-linear �-model scale f . The non-linear operators can be
regarded as the minimal extension of the SM required to enforce the Goldstone
symmetry on the Lagrangian. Thus they define the minimal set of SM deformations
which we will unmistakably encounter in any explicit model with pNGB Higgs,
if based on the minimal coset SO.5/=SO.4/. The Goldstone symmetry relates
operators with different number of Higgs insertions but with the same number
of derivatives and gauge fields. For the uplift of the SM couplings to Goldstone
symmetry invariants, therefore, only CCWZ operators of the minimal derivative
order are considered. Those of O.p2/ in the bosonic sector and of O.p0/ in the
fermionic one. Extending the operator analysis to higher orders is one of the goals
of the present chapter.

Going beyond the �-model will carry us one step ahead in the theoretical
comprehension of the composite Higgs scenario, but it will also force us to
make additional assumptions on the dynamics of the composite sector besides the
occurrence of spontaneous Goldstone symmetry breakdown. Namely, we will need
to make a hypothesis on the typical size of the higher derivative operators induced
by the composite dynamics in the low energy effective theory. Such operators
estimate is what we call the “power-counting rule” of the effective field theory.
Power counting did not play a major role in the previous chapter because the lower
derivative order operators come in such a limited number that their coefficient
needs not to be estimated but it can just be fixed by observations. This is what we
saw happening in the fermion sector in Sect. 2.4.2, where the generalized Yukawa
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78 3 Beyond the Sigma-Model

coefficients have been traded for the top and bottom masses. Up to few exceptions
this led us to coupling predictions that are uniquely dictated by the �-model scale
f or, equivalently, by the parameter  D v2=f 2. The situation will be different with
higher derivative operators, each coming with its own independent parameter. By
power-counting we will estimate the operator coefficients and thus their contribution
to the physical observables, even if we will still be unable to determine them
completely. Their precise value depends on the microscopic details of the composite
sector and it is not calculable within the effective theory. Other than estimating
coefficients, and more importantly than that, power-counting serves as a criterion
to identify the most relevant operators and to select only a finite number of them
for practical calculations. Power-counting also tells us the size of the operators that
we have neglected when truncating the effective field theory Lagrangian and thus it
provides us with an estimate of the accuracy of our predictions.

The second problem that we will address in the present chapter concerns the
physics of the resonances, i.e. the additional non-Goldstone bound states that are
present in the composite sector. While by powerful symmetry principles the pNGB
low-energy dynamics is well under control, nothing has been said on the resonances
up to now. But we need to characterize their phenomenology and thus we must find
a way to at least estimate resonance couplings and masses.

The two problems are actually related in the case of perturbative composite
sector models because higher derivative operators originate from integrating out
resonance fields. By an estimate of resonance couplings one can thus derive the
effective operators power-counting. This is conveniently illustrated in the linear �-
model example of Sect. 2.2.2, which describes one single scalar resonance � on top
of the pNGB Higgs and the SM gauge fields. The Lagrangian contains the O.p2/
non-linear �-model operator (2.32) (or equivalently (2.184)) plus � resonance self-
interactions (2.12) and � couplings to the SM fields which are given by

�
f

2
� C 1

4
�2
�

d�; id
�; i : (3.1)

By integrating out � and Taylor-expanding for momenta below the resonance mass
m�, the interactions above generate operators of higher and higher derivative order.
The first one is O.p4/ and emerges from the first diagram in Fig. 3.1 by the exchange
of one virtual � particle, it is

L.4/EFT D
1

2

�
f

2

�2
1

m2�

�
d2
�2 D f 2

8m2�

�
d2
�2
: (3.2)

d2 d2
d2

d2

d2

d2

d2

d2

Fig. 3.1 A schematic view of the Feynman diagrams that generate the effective field theory
operators from the virtual exchange of the massive resonances. The blob denotes the resonance
coupling to the light Higgs and gauge fields, given by Eq. (3.1)
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Aside from the 1=2 prefactor, which results from the explicit calculation, the
emergence of the other factors is easily understood from the diagram in Fig. 3.1.
The two powers of f=2 come from the � vertices and 1=m2� is the low-momentum
propagator. If we compare the result with the O.p2/ operator with f 2=4 coefficient,
we reach the unsurprising conclusion that the O.p4/ term is weighted by one
extra 1=m� factor for each extra derivative. The simplest guess is that this pattern
continues to higher orders and the O.pn/ operators scale as

L.n/EFT D
f 2

mn�2�
O.n/ ; (3.3)

where O.n/ denotes a linear combination of O.pn/ CCWZ invariants with order-one
numerical coefficients. It is not hard to verify that the guess is correct. Consider
for instance the O.p6/ operators. Some of them come from the single resonance
exchange diagram by taking the second order in the propagator expansion. This
leads to one p2=m2� factor, which is @2=m2� in coordinate space, and Eq. (3.3) is
respected. The second source of O.p6/ operators is the second diagram in Fig. 3.1,
which gives

L.6/ � f 3
1

m6�
.g2�f /

�
d2
�3 D f 2

.g�f /2

m6�

�
d2
�3
; (3.4)

where the three f factors come from the � couplings to SM fields, 1=m6� is due to
the three � propagators and g2�f is the trilinear � self-coupling. The result agrees
with Eq. (3.3) because we saw that the resonance mass is related to g� and f by

m� D g�f : (3.5)

The same is found for the third contribution depicted in Fig. 3.1 and it would
not be hard to demonstrate by diagram inspection that the validity of the power-
counting (3.3) extends to all orders in the derivative expansion. This has a simple
and structural origin as we will explain in the following section.

3.1 One Scale One Coupling

In order to illustrate the assumptions that we are going to make on the composite
sector dynamics we start by summarizing, with the help of Fig. 3.2, the physical
setup that we have in mind. There exists a new sector that delivers the NGB
Higgs plus a set of massive resonances. We will generically denote the latter states
as � , that stands for bosonic spin 0 or spin 1 particles, and ‰, that represents
spin 1=2 fermions. Ideally also higher spin resonances might emerge, however since
a weakly-coupled Lagrangian description of this kind of objects is problematic we
are not going to discuss them explicitly in what follows.
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Fig. 3.2 The composite Higgs setup. The elementary SM gauge fields are the three W’s, the
hypercharge boson B and the eight QCD gluons. The elementary fermionic quark and lepton fields
are collectively denoted as  L and  R

We consider a situation where the composite sector dynamics can be described
perturbatively by a weakly-coupled Lagrangian LC. A simple example, the linear
�-model, was studied explicitly in Sect. 2.2.2. One could imagine complicating it
by adding new scalar, fermion or massive gauge fields. Provided they fulfill the
condition described below this kind of generalized linear �-models are within the
scope of the present discussion. More interesting examples are the five-dimensional
holographic composite Higgs models, many of which have been proposed in the
literature [1–3]. In this case what we call the composite sector is the 5-d bulk
dynamics of the theory, namely the 5-d gauge theory with Dirichlet boundary
conditions on the UV brane. After Kaluza–Klein reduction this theory describes
the NGB Higgs plus an infinite set of weakly-coupled resonance fields. Details
on the interpretation of 5-d models in these terms can be found in the original
literature and in a comprehensive review [4]. Another set of explicit constructions to
which these ideas apply will be discussed in Chap. 5. Clearly, the hope here is that
those models might faithfully reproduce the low-energy manifestations of a genuine
strongly-coupled confining sector, possibly described at the microscopic level by
a four-dimensional gauge theory. We will discuss at the end of this section how a
genuine strong sector might indeed fit in the present discussion and truly obey the
assumption which we are going to make on the resonance dynamics. The composite
Higgs models also contains, as shown in Fig. 3.2, elementary SM fields coupled
to the composite sector in a peculiar manner explained in the previous chapter. We
momentarily ignore the elementary fields interactions and we focus on the couplings
among composite particles.

Our assumption is that the composite sector Lagrangian involving space–time
derivatives, Goldstones and resonance fields is of the form

LC D m4�
g2�
OL
�
@

m�
;

g�…
m�

;
g��
m�

;
g�‰

m�3=2

	
; (3.6)

where OL is a dimensionless polynomial functional with arbitrary order-one numer-
ical coefficients. The fields that appear in the equation are all supposed to be
canonically normalized and indeed when applied to the kinetic terms our formula
consistently predicts order-one coefficients. Notice that Eq. (3.6) provides an esti-
mate of the composite particle interaction vertices in terms of two parameters only,
the typical resonance scale m� and the typical resonance coupling g�. Theories
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obeying Eq. (3.6) are thus said to be “One Scale One Coupling” (1S1C) models.
We will show below how to define the 1S1C assumption rigorously by dimensional
analysis. The scaling of the Goldstone field insertions in Eq. (3.6) should be
compared with what is predicted by the Goldstone symmetry, i.e. the fact that the
… field only enters in the Lagrangian through the Goldstone matrix and thus it is
weighted by the non-linear �-model scale f . We must then identify

f D m�
g�
: (3.7)

Notice that by this identification the parametric scaling of the O.p2/
Lagrangian (2.184) is immediately seen to match with Eq. (3.6). Furthermore, it is
not hard to check that Eq. (3.6) is verified by the whole linear �-model Lagrangian,
including � self-interactions and its coupling with the Goldstone in Eq. (3.1). This
qualifies the linear �-model as a 1S1C theory.

The 1S1C hypothesis can be phrased in a fancy but useful way in terms of
dimensional analysis. The argument is extremely simple, however it cannot be made
by just counting energy dimensions as we are used to do by working in Natural Units
where „ D c D 1. We must take care of all the three fundamental physical quantities
of the MKS system, namely the length L, the mass M and the time T. For the sake
of the present discussion we will actually trade these three quantities for the energy
E D M L2=T2, length and time. In MKS units the quantum-mechanical action has
dimension of E T, which is the one of the reduced Planck constant „. Therefore the
Lagrangian density must have dimension1

ŒL� D E T=L4 D Œ„�=L4 ; (3.8)

and thus canonically normalized bosonic and fermionic fields have dimensions

Œ…� D Œ�� D Œ„�1=2=L ; Œ‰� D Œ„�1=2=L3=2 : (3.9)

In order for the interactions in Eq. (3.6) to have the correct dimension we must set

Œm�� D L�1 ; Œg�� D Œ„��1=2 : (3.10)

This sharply defines m� as a scale, namely a length scale, and g� as a “coupling” C,
i.e. a parameter that carries a dimension

C D Œ„��1=2 D .ET/�1=2 : (3.11)

1We take x� D fc t; #„x g, therefore the space–time volume is d4x D dx0d3x D c dt d3x and @� D
@=@x� has dimension of L�1.
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Table 3.1 The dimension of some important SM parameter

Parameter e �H GF mW;Z v f�
Dimension C C2 C2L2 L�1 C�1L�1 C�1L�1

The results agree with the ones in Sect. 6-2-1 of the classical book in [5]. Comparing them with the
PDG ones, namely those reported in Table 1 “Physical Constants” of [6] requires more care since
the latter are given in an old-fashioned conventions (see for instance [7]) where „ and c appear
explicitly in the Lagrangian

In Natural Units, C dimensions are lost and one might be tempted to treat g� on
the same footing as a dimensionless numerical parameter. However it is enough
to reintroduce „ to appreciate the fundamental difference between g� and a pure
number. Similarly, we can appreciate the difference between a “pure scale” like m�
and an object like the Goldstone decay constant f , with dimension

Œ f � D C�1L�1 : (3.12)

Dimensional analysis is extremely useful in many contexts and not just in the study
of composite Higgs theory. Table 3.1 reports the dimensions of some important SM
parameters. Those allow us to better understand a number of known results. For
instance from the fact that the Higgs quartic coupling �H has dimension C2 we
understand how it can appear at the first power in a tree-level 2 ! 2 scattering
amplitude while the electric charge e, of dimension C, must come with the square.2

We also understand why supersymmetric relations among �H and the weak coupling
are of the form �H � g2. Similarly we understand in which sense the Fermi constant
is a coupling, or actually a coupling squared. This is why it can mediate 2 ! 2

scattering.
By turning around the dimension counting we can reformulate the 1S1C hypoth-

esis (3.6) in an equivalent and simpler way. The 1S1C theories are those in which
m� and g� are the only dimensionful parameters, with the dimensions in Eq. (3.10).
The composite particle couplings are thus obliged to be as in Eq. (3.6) because this
is the only form they can have by dimensional analysis. This reformulation is useful
in at least two respects. First, it allows us to tell if the 1S1C hypothesis is verified
without having to work out the Goldstone and resonance couplings explicitly and to
check that they agree with Eq. (3.6). For instance we might have told that the linear
�-model fits in this category by just looking at its original Lagrangian in Eq. (2.5),
with no need of performing the field redefinition which isolated the Goldstones from
the resonance � . A more interesting example is the one of 5-d holographic models.

2We can take creation/annihilation operators to have dimension L (and not to have „ in their
canonical commutators) by factoring out a

p„ in the Fourier decomposition of the fields. The
n-particles states thus have dimension Œjni� D Ln. The 2 ! n Feynman amplitude is conveniently
defined as hn; outj2; ini D .2�/4ı4.pout � pin/„n=2Mn, so that ŒMn� D CnLn�2 and in particular
ŒM2� D C2. Having stripped out „n=2 from the definition, no further powers of „ appears in Mn

at tree-level while a factor of „L emerges at L loops.



3.1 One Scale One Coupling 83

In that case the only two dimensionful parameters are the 5-d gauge coupling g5
with Œg5� D C L1=2 and the length of the extra dimension in conformal coordinates
1=�IR with Œ1=�IR� D L. This qualifies the 5-d model as a 1S1C theory with

m� D �IR ; g� D g5 �
1=2
IR : (3.13)

We can thus conclude that the resonance couplings obey Eq. (3.6) without comput-
ing them explicitly through a complicated Kaluza–Klein reduction.

The second way in which the reformulation is useful is that it makes very simple
to draw the implications of the 1S1C hypothesis. Let us consider the low-energy
effective theory for the Goldstones obtained by integrating out the heavy resonance
fields. From our estimate of the resonance couplings we should be able to derive
the effective field theory power-counting. If the resonances are integrated out at tree
level, no dimensionful parameter appears in the calculation aside from m� and g�
and therefore dimensional analysis tells us that the operator scaling in Eq. (3.6) must
be respected also by the effective field theory Lagrangian. This indeed coincides
with the power-counting formula (3.3), which we derived explicitly in the linear
�-model example. One can immediately check this by noticing that in the CCWZ
invariants O.n/ the Goldstones enter as …=f . The situation is different for radiative
corrections, where one extra dimensionful parameter, „, appears. Indeed it is well
known that „ controls the semiclassical perturbative expansion and one power of
„ is associated to each loop. By dimensional analysis the complete effective field
theory Lagrangian must thus scale like

LEFT D m4�
g2�
OLtree

�
@

m�
;

g�…
m�

;
g��
m�

;
g�‰

m�3=2

	

C g2�„
16�2

m4�
g2�
OL1-loop

�
@

m�
;

g�…
m�

;
g��
m�

;
g�‰

m�3=2

	
C : : : ; (3.14)

where 1=16�2 is the habitual factor from the loop integral. In the above equation
we retained the dependence on the resonance fields � and ‰ because we might
sometimes be interested in integrating out only some of the resonances and retaining
the others in the effective field theory. Obviously this does not make sense if all the
resonance are equally heavy, but it can have a justification if some of them are
somewhat lighter than the others for some numerical coincidence or for a structural
reason.

The above formula goes under the name of “SILH power-counting”, from the
title of Ref. [8] where it was introduced in the study of composite Higgs theories.3

It was first discussed in a different context by Georgi [11] as a generalization of
the NDA counting [12]. The NDA formula is recovered from Eq. (3.14) in the limit

3The derivation of the SILH power-counting based on dimensional analysis was known to the
experts of the field. See for instance [9, 10].
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g�! 4�=
p„, which is the maximum value of the coupling for which the modelling

of resonances of Eq. (3.6) makes sense before entering the non-perturbative regime.
The perturbativity bound g� < 4�=

p„ follows from the fact that the dimensionless
parameter combination which controls the loop expansion is g2�„=16�2. Below that
value the theory of resonances is perturbative and consistent with unitarity, and so
is the effective field theory constructed out of it.4

One important comment to be made on Eq. (3.14) concerns the distinction among
tree- and loop-generated effective operators, which clearly depends on the details on
the composite sector theory. For instance in the linear �-model we found that the
only O.p4/ operator that is generated at the tree-level is .d2/2, whereas many others
would arise in a more complicated theory such as a 5-d model. Not having a strong
enough argument to distinguish loop from tree operators, in what follows we will
adopt the agnostic attitude that all the operators compatible with symmetries might
arise at tree-level, so that the estimate of their coefficients is provided by the first
line of Eq. (3.14). It must however be kept in mind that loop factor reductions of the
coefficients are actually possible in specific classes of composite sector models [8].

We now consider the elementary sector. The 1S1C hypothesis is sufficient to
generalize the power-counting in Eq. (3.14) to include elementary fields insertions.
This will not cost us any new assumption, aside of course from the one we
made already in the previous chapter on the nature of the elementary/composite
interactions Lint. We start from the gauge fields (see Eq. (2.107) and Footnotes 16,
17), which are introduced with the gauging procedure and thus talk with the
composite sector through

Lgauge
int D g A�J� : (3.15)

In the above equation, g collectively denotes the gauge couplings and J� are the
composite sector global symmetry currents that are gauged by the fields A�. Among
the gauge fields we have the four SU.2/L � U.1/Y ones plus the eight QCD gluons
Ga
�. We indeed showed in Sect. 2.4 that partial compositeness obliges us to make

the composite sector colored and thus coupled to gluons. Now that we know the
structure of the gauge field couplings to the composite sector, which by the way is
the same through which the QED photon couples to QCD, we should be capable
to estimate their interactions with the composite Particles. More precisely, we will
now focus on the leading contribution to the interactions, namely the one that comes
purely from the composite sector dynamics, i.e. in the limit of vanishing g coupling.

4A not commonly appreciated puzzle is that the maximal coupling estimate based on unitarity
of 2 ! 2 processes, see for instance [13], is actually

p
2� times lower, meaning that there

exist perturbative theories which are formally non-unitary. This discrepancy comes from the 2�
enhancement of the imaginary part of the one-loop amplitude, which makes the latter comparable
with the tree-level real part at smaller coupling. Given that the imaginary part is actually a tree-
level process we consider this fact as a signal that the conventional unitarity argument, based on
the habitual but artificial separation among tree and loop, should be reconsidered.
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Technically, what we want to do is to estimate the effective field theory operators
obtained by integrating out only the resonance fields (possibly retaining some of
them) while treating the gauge fields as external non-dynamical sources. In those
operators the gauge field necessarily comes accompanied by one power of g and
no other powers of the elementary couplings can arise since the only dynamics
that is integrated out is the composite sector one. Elementary fields and elementary
couplings thus only emerge in the combination

g  A� ; (3.16)

where of course the appropriate coupling g D fg; g0; gSg has to be picked out for
each field.

The dependence on the composite sector parameters g� and m� is now uniquely
fixed by dimensional analysis. In order to work it out we first of all need to find the
dimension of the elementary couplings g. Not surprisingly it is5

Œg� D C : (3.18)

The g  A combination, given the canonical fields dimension in Eq. (3.9), has
dimension of an inverse length. The dimensionless object which will appear in the
effective Lagrangian is thus

g  A�
m�

: (3.19)

We see that g  A weights as much as a derivative in the power counting. This
result is compatible with the structure of the gauge covariant derivative and with the
dependence on the gauge fields of the CCWZ operators described in the previous
chapter.

The elementary fermion fields can be discussed in a similar way. The only
conceptual difference with the gauge fields is that the fermionic composite operators
are not as sharply defined as the global currents are. In concrete, when we write the
elementary/composite interactions as

Lint D � O ; (3.20)

we have not yet specified O but only its quantum numbers. The normalization
is still arbitrary and indeed in Sect. 2.4.2 we already exploited the ambiguity

5This is because the global current operator, as extracted from the Noether formula, has dimensions

ŒJ� D ŒL� � L D Œ„�=L3 D C�2=L3 : (3.17)

Therefore, given that ŒA�� D C�1L�1, Œg� D C is required for the interaction Lagrangian to have
the correct dimension.
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in the definition of O to reabsorb in it the powers of m� needed to make the
elementary/composite couplings � dimensionless in Natural Units. Now we have
to deal with length and coupling dimensions but we can still reabsorb powers of m�
and g� in O giving to � any conventional dimension. All choices are equivalent but
the convenient one is to take � to be a coupling

Œ�� D C : (3.21)

With this choice the dimensionless object is

�   
m3=2

�
; (3.22)

where the appropriate � has to be chosen for a given fermion species and chirality.
We saw in Sect. 2.4.2 that four � couplings exist already in the third family sector,
namely �tL;R for the top and �bL;R for the bottom. Given that those couplings
generate fermion masses after EWSB and the top mass is larger than the one of the
bottom, the top sector couplings are typically larger than the bottom ones. Similarly,
we expect the light fermion couplings to be very small even though this is not
necessarily the case as we will discuss in Chap. 4.

In summary, our power-counting formula reads

LEFT D m4�
g2�
OL
"
@

m�
;

g�…
m�

;
g��
m�

;
g�‰

m�3=2
;

g  A�
m�

;
�   
m3=2

�

#
; (3.23)

up to higher orders in the g� loop expansion. The one above is the power-counting
rule for purely composite sector contributions to the operators, we will see in
Sect. 3.3 how to generalize it in order include the radiative effects from elementary
field propagation, in particular we will consider those responsible for the generation
of the Higgs potential.

3.1.1 Large-N Power Counting

Until now we have considered the case of a weakly-coupled composite sector
and we have derived our power-counting rules based on the 1S1C hypothesis. We
have also mentioned concrete examples, the most interesting being the one of 5-d
holographic models, where the 1S1C hypothesis holds and thus the power counting
rule applies. It is important to remark that our argument, though based on such
simple and robust considerations like dimensional analysis, is intrinsically based
on semiclassical perturbation theory and there is no hope of extending it to the
non-perturbative case. The reason is that in a non-perturbative theory, where all the
loop orders are equally important, the Planck constant can appear in all places in
a completely uncontrolled manner, while for our reasoning it was crucial to keep
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track of the powers of „ that arise at each order of the loop expansion. Coupling
dimensional analysis becomes not predictive in the strongly-coupled limit because
C dimensions can always be compensated by „, without paying the price of the
small loop expansion parameter. The QCD theory with vanishing quark masses is
an example of this situation. It is definitely a 1S1C theory because it is defined in
the UV in terms of just one coupling gS measured at one scale �, however it is clear
that QCD hadrons do not obey the power counting (3.23), or more precisely they do
not obey it with m� identified with � and g� identified with gS. Low-energy QCD
physics is controlled by the confinement scale ƒQCD (which is a highly non-trivial
combination of �, gS and „) and there is no obvious candidate for the resonance
coupling g�.

Nevertheless, Eq. (3.23) still holds, at least in the mesonic sector of the theory. In
order to understand how this works we must consider the large-N expansion of QCD
invented by G. ’t Hooft in [14]. It consists in generalizing the SU.3/ color group to
SU.N/, allowing N to be large and asymptotically infinite. An expansion is thus
set up in terms of the small parameter 1=N � 1. Notice that the expansion must be
performed with care in order to get sensible results. In particular, the strong coupling
constant must be taken to scale with N as gS D g0t=

p
N with a constant ’t Hooft

coupling g0t. At high energies the ’t Hooft coupling is small and the canonical
semiclassical expansion can also be set up together with the one in 1=N. In the
IR, which is the relevant regime for our discussion, the ’t Hooft coupling becomes
non perturbative and 1=N remains as the only expansion parameter. The topic of
large-N expansion is extremely broad, however for our argument we will only need
few basic results. The reader is referred to the Coleman lectures [15] and to the
introduction of [16] for their derivation.

We consider here the mesonic sector, i.e. only those bound states that can be
excited from the vacuum by a quark bilinear operator

M � qi.: : :/q
i ; (3.24)

where i D 1; : : : N is the color index contracted to form a color singlet. The
dots in the parentheses represent an arbitrary combination of Gamma matrices and
derivatives so that M could be a scalar, a vector, or any other Lorentz tensor. The
associated particles could thus be the Goldstone bosons, i.e. the pions, or spin-1
resonances like the � or the a1 mesons or higher-spin bosonic particles. Quark
chiralities and flavor indices are not reported in our schematic notation. The four
combinations of spinor chiralities qL;R.: : :/qL;R can be considered, with the flavor
indices contracted in all the possible ways to form irreducible representations of the
chiral group. Clearly, a limited set of representations can be formed in this way and
correspondingly only particles with certain isospin (or Gell-Mann SU.3/) quantum
numbers can be described by this class of operators. The others are outside the
mesonic sector and the considerations which follow do not hold for them.

We will now estimate the scattering amplitudes among mesonic particles and
for this we first need to discuss the connected correlators of the mesonic operators.
Diagrammatically those are shown in Fig. 3.3 where each operator is represented
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Fig. 3.3 Some planar diagrams contributing to the mesonic correlators. Summation over the free
color indices i, j, k is understood

as a q–q vertex with the same color index on the two legs. Only few representative
diagrams are reported in the figure but it is clear that an infinite set of them should be
considered since the theory is in a non-perturbative regime and any loop order gives
a comparable contribution. However we can still rely on the large-N expansion and
apply the classical result [14–16] that the leading diagrams are the “planar” ones,
namely those that can be drawn on a plane without line intersections aside from the
interaction vertices. Actually the true definition of planarity is a bit more refined
than that and the only truly planar diagrams in this case are the ones which involve a
single quark loop. It turns out that all the planar diagrams give a contribution to the
correlator which is proportional to N while the others, depending on their “degree of
non-planarity”, scale like N0, 1=N and so on, providing subleading corrections. We
will not demonstrate this here, however the reader can easily verify that at least the
first three planar diagrams in Fig. 3.3 really scale like N. This is obvious for the first
one because there is only one free color index to be summed over. For the second
one there are two free indices, which gives N2, but also two powers of the coupling,
g2S, which scales like 1=N in the ’t Hooft limit. In the third one there are 3 indices but
4 couplings and so on for higher loop orders. In summary, the correlators scale as

hM1 : : :Mni / N ; (3.25)

for an arbitrary number n of mesonic operator insertions.
We can get a better parametric control on the correlator by dimensional analysis.

Since coupling dimension does not help in the case of a strongly-coupled theory we
can go back to Natural Units and just count energy dimensions. Low-energy QCD is
well-know (or at least widely believed) to be a one-scale theory, with a single energy
scale ƒQCD from confinement. But if it is so, all the infinite series of diagrams in
Fig. 3.3 must conspire to give a dimensionally correct result which only depends on
the external momenta pi and on m� D ƒQCD, namely

hM1 : : :Mni � N

16�2
m�� FŒpi=m�� ; (3.26)

where the energy dimensionality of the correlator, �, could be easily computed in
terms of those of the Mi’s. The actual value of � does not matter much. Since m�
is the only dimensionful object in the problem aside from the external momenta the
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overall dependence on it is trivially fixed. It could be safely ignored and restored at
the end of the calculation by dimensional analysis. What is less trivial in the above
equation is the 1=16�2 loop factor, which has been introduced with the following
logic. The theory being non-perturbative means that loop diagrams of all orders give
comparable contributions, therefore it should be sufficient to pick up one in order to
obtain an estimate of the final result. The 1=16�2 factor is found by looking at the
simplest (one loop) diagram in Fig. 3.3.

In order to obtain the scattering amplitudes we must compute the residual of
the correlators at the on-shell poles (which amounts to multiply by p2i � m2

i for
each external leg and to take the on-shell limit) and eventually divide by the wave
function renormalization factors

p
Zi. Schematically, wave functions are extracted

from the two-point correlators as

hMiMii D
p2i !m2i

Zi

p2i �m2
i

� N

16�2
m�i� FŒpi=m��

+
p

Zi �
p

N

4�
m

�i
2 C1

� (3.27)

where�i is the dimension of the two-point correlator. Dividing by
p

Zi leads to one
4�=
p

N factor for each of the external legs. The powers of m� combine to give the
correct dimension of the n-point Feynman amplitude, which is ŒAn� D E4�n, and
we find

An � m4�
N

16�2

�
4�p

N

�n �
1

m�

�n

FŒpi=m�� : (3.28)

The result is remarkable. It shows that any sensible amplitude (with n > 2)
is suppressed at large-N and eventually vanishes in the strict limit 1=N D 0.
Therefore mesons asymptotically become free particles and this is surprising since
they originate as bound states of a strong dynamics. At finite N they behave like
weakly-interacting particles with a coupling factor

g� D 4�p
N
; (3.29)

which suppresses the amplitude for each external leg. The behavior of the ampli-
tudes in Eq. (3.28) must be reproduced, in the low-energy effective description of
the mesonic particles, by a peculiar dependence of the effective operator coefficients
on g� and m�. Namely, for each field insertion one needs one g� and an appropriate
power of m� (m�1� for bosons and m�3=2� for fermions) fixed by the energy dimension
of the low-energy meson fields. Derivatives correspond to momenta in the Fourier
space and thus they come with 1=m�. An overall additional factor of m4�=g2� must
also be present to match with Eq. (3.28). We end up with the 1S1C power-counting
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in Eq. (3.23). As anticipated it holds in the mesonic sector of low-energy QCD even
though for a radically different reason than for perturbative theories. The actual
value of g� depends on N, it can range from 0 to 4� . For real-world QCD N D 3

and one is entitled to approximate g� D 4�=
p
3 ' 4� , in which case the power-

counting formula reduces to the NDA counting [12]. The latter is known to give
phenomenologically valid estimates of the chiral Lagrangian operators, providing a
partial experimental confirmation of Eq. (3.23).

The interactions involving elementary fields are easily estimated by proceeding
along similar lines. In this case one has to compute scattering amplitudes in the
presence of external elementary field sources, at a fixed order in the elemen-
tary/composite couplings g and �. For this we need correlators with insertions of
the composite operators (J and O) the elementary fields are coupled to. Under the
assumption that also those operators are mesonic, the correlator estimate is still the
one in Eq. (3.26) and the derivation proceeds as before, with the only difference that
no wave-function factor has to be taken out for the elementary field legs. Therefore,
there is no 1=

p
Z � g� for the elementary field insertions, but instead we have

the elementary coupling g or � from the source interaction coefficient. Dimensional
analysis does the rest and we recover Eq. (3.23). All this holds if the operators J and
O the sources couple to are mesonic operators. This is definitely the case in QCD
where the relevant source is the electromagnetic field coupled to the quark current.
Photon interactions with the hadrons can thus be estimated by Eq. (3.23), once again
with good phenomenological success.

The fact that the 1S1C power-counting applies to the mesonic sector of QCD
gives a strong support to its validity. It shows that it could hold not just for “fake”
weakly-coupled composite Higgs models but also for genuine strongly-coupled
theories. The two things might actually coincide, for instance the 5-d holographic
models might be dual to some strong 4-d dynamics, but we do not need to assume
an exact duality to apply the 1S1C power-counting. Nevertheless, those are just
indications and no conclusive statement can be made on which one is the true
power-counting of the true composite sector (if any) the pNGB Higgs emerges
from. This is because of several reasons, the most obvious one being that we do
not know anything about the underlying microscopic theory. For sure it is not QCD,
nor a rescaled version of it. If it is a radically different theory its hadron scattering
amplitudes might obey a different power-counting. Actually even if the theory was
QCD-like the power-counting could be different if the relevant composite particles
and operators were not mesons but other color singlets formed by more complicated
contractions than qi  qi. For instance the glueball amplitudes in QCD are not
controlled by g� � 1=

p
N but by g� � 1=N [14–16]. The composite Higgs

fermionic operators O deserve a special mention in this context. We assumed them
to be mesons, but of course in QCD there are no mesonic operators with Fermi
statistics. The only fermionic candidates are baryons which however behave at large-
N in a radically different manner. They cannot even be described by a Lagrangian
because they are solitons [16]. The femionic operators we are talking about and the
associated particles should emerge from some different theory, for instance from
objects like �
i qi in some supersymmetric model with scalar quark partners � i.
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Non-supersymmetric proposals for the microscopic origin of these operators have
been made in [17–19].

In conclusion, the 1S1C power-counting should be regarded as a plausible guess
on the unknown composite sector dynamics, which can be supported and motivated
by different viewpoints, but it should not be taken as absolute truth. Also the fact that
it has no known alternative does not mean that it is necessarily unique, other options
could be explored.6 With this caution remarks in mind, we will make extensive use
of it in what follows.

3.2 Higher Derivative Operators

We now have all the ingredients to improve our low-energy description of the
composite Higgs, the SM vectors and fermions, by going to the next order in
the derivative expansion. This will induce new effects which were absent in the
leading-order Lagrangian. In particular, the only leading-order corrections to the
SM have been found to be the modified interactions of the Higgs particle (see for
instance Eqs. (2.38), (2.122)), induced by additional non-renormalizable operators
with extra powers of the Higgs field but without extra derivatives or gauge field
insertions. The leading terms are d D 6 operators suppressed by 1=f 2 with respect
to their d D 4 SM counterparts. The higher order CCWZ operators discussed
in what follows will instead induce, in accordance with the power-counting in
Eq. (3.23), d D 6 corrections with extra derivatives and gauge fields, suppressed by
1=m2� D 1=g2� 1=f 2. Their effect is thus generically subdominant if g� > 1 and this is
precisely why it makes sense to neglect them in a first approximation. Nevertheless
they are not at all irrelevant. First of all, because g� might be dangerously close
to one. Of course we would like to have it large to make the resonances heavy,
however we will see in Sect. 3.3 that it should better not be too large in order
for the Higgs being naturally light. Second, higher derivative operators induce
corrections to the SM gauge field propagators and interactions which were absent
at the leading order. Though suppressed, those effects are strongly bounded by
Electro-Weak Precision Tests (EWPT) and thus they give rise, as we will see
below, to important phenomenological constraints on the composite Higgs scenario.
Finally, higher derivative operators give enhanced contributions to high momentum
reactions. Therefore they might become relevant for a program of high-energy
measurements to be performed at the LHC and at future colliders.

6Several confusing statements about power-counting have appeared in the recent literature. For
instance that power-counting is a convention and any guess is equally plausible. Or the converse
one, that power-counting should be inferred from the effective field theory itself by some
“consistency” requirement. Both those statements are false. Power-counting is the result of a set
of assumptions on the UV theory, thus it is not unique but any sensible one, possibly alternative to
1S1C, must be founded on alternative physics hypotheses.
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3.2.1 Order p4 Bosonic

The most general CCWZ invariant operator can be written, as discussed in
Sect. 2.3.3, in terms of the d� symbol and the covariant derivative D�, with the
unbroken group and the Lorentz indices properly contracted to obtain an invariant
Lorentz scalar. The O.p4/ operators can be classified in three groups: those obtained
by four d-symbol insertions and no derivative, those with two d’s and two D’s and
the ones with four D’s and no d-symbols. No SO.4/ invariant can be constructed
with an odd number of d symbol insertions so the three classes above exhaust all
possibilities. It is convenient to start the classification from the operators in the last
category, which are obtained by taking covariant derivative commutators, forming
the E�	 field-strength following Eq. (2.76) and contracting indices to form a scalar.
Given that the E tensor is a reducible representation of SO.4/ (see section “Explicit
CCWZ for SO.5/=SO.4/” in Appendix in Chap. 2) and taking care that the Lorentz
indices can be contracted either with ��	 ’s or with the Levi–Civita antisymmetric
tensor ��	�� , four independent operators exist

OCC; 1 D EL˛
�	E

L�	
˛ C ER˛

�	E
R�	
˛ ;

OC�; 1 D EL˛
�	E

L�	
˛ � ER˛

�	E
R�	
˛ ;

R�C D ��	��
�

EL˛
�	E

L
��; ˛ C ER˛

�	ER
��; ˛

�
;

R�� D ��	��
�

EL˛
�	E

L
��; ˛ � ER˛

�	E
R
��; ˛

�
; (3.30)

where the operators labelling reflects the quantum numbers under the CP and
PLR Z2 symmetries defined and discussed in section “Discrete Symmetries” in the
Appendix. As explained in the Appendix, all the operators are even under charge
conjugation and their CP quantum number is only dictated by parity. The ones
constructed with the � tensor are odd while the others are even. The PLR parity
assignment is also evident since PLR interchanges L with R. We will show below
that the operators labeled as “R” are redundant.

The second class of operators to be discussed are those with four d-symbols and
no covariant derivatives. The four fourplet indices can be contracted with two ıij’s
or with the completely antisymmetric SO.4/-invariant tensor �ijkl. In the first case,
��	’s have to be employed for the Lorentz contractions while the Levi–Civita ��	��
is needed in the second one. We have a total of three new operators

OCC; 2 D .di
�d�i /

2 ;

OCC; 3 D di
�d�j dj

	d
	
i ;

O��; 1 D �ijkl�
�	��di

�dj
	d

k
�d

l
� ; (3.31)
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which are again classified according to their CP and PLR properties. Notice that
the � tensor in SO.4/ produces a PLR-odd object because PLR, as discussed in
section “Discrete Symmetries” in the Appendix, is just parity in O.4/ and it is
represented by a matrix with determinant�1.

The operators in the last class, made of two d’s and two D’s, can be further
divided into two subclasses. The first ones are the commutator of two D’s, i.e. the
EL;R
�	 field-strengths, multiplied by two d’s. There are three of them which are

relevant

RCC; 1 D EL˛
�	d

�
i

�
i t˛L
�ij

d	j C ER˛
�	d

�
i

�
i t˛R
�ij

d	j ; (3.32)

OC�; 2 D EL˛
�	d

�
i

�
i t˛L
�ij

d	j � ER˛
�	d

�
i

�
i t˛R
�ij

d	j ;

O��; 2 D ��	��
�

EL˛
�	d�; i

�
i t˛L
�ij

d�; j � ER˛
�	d�; i

�
i t˛R
�ij

d�; j
�
:

A fourth one, like O��; 2 but with “C” instead of “�” in the parenthesis, has been
voluntarily ignored and will be discussed below. The second set of operators are
those constructed with two d-symbols and two covariant derivatives acting on them.
In the classification of the operators in this subclass the covariant derivatives must be
taken to commute as if they were ordinary derivatives because covariant derivative
commutators produce E�	 field-strengths and lead to operators we already counted
in the first subclass. Actually, since we missed one operator in the previous subclass,
one exception to this rule is needed and three operators must be considered

OCC; 4 D .D  d/iŒ�;	� .D  d/Œ�;	�i ;

O�C D ��	�� .D  d/iŒ�;	� .D  d/Œ�;��; i ;
RCC; 2 D

�
D�d�

�
i
.D	d

	/i ; (3.33)

where D  d denotes the covariant derivative of the d-symbol. We have chosen to
express the operators in terms of D  d anti-symmetrized on the Lorentz indices
because this has a rather simple explicit form, provided by Eq. (2.188). In writing
O�C we made the above-mentioned exception, indeed O�C would vanish if the
covariant derivatives had to commute. By integrating by parts O�C can be rewritten
in terms of the covariant derivatives commutator, i.e. of the field-strength tensors,
reproducing the operator which we were missing in Eq. (3.32).

We end up with a total of 10 operators (distributed as 4–2–2–1 in the CC, ��,
C� and �C categories) and we claim that this is all what is needed to describe the
composite Higgs dynamics at O.p4/ in the bosonic sector. However we still have to
deal with the four operators R�C, R��, RCC; 1 and RCC; 2 and to show that they are
redundant as anticipated. We start from R�C and R��, which are redundant simply
because they are total derivatives. In order to show this one has to remember (see
for instance [20]) that out of a generic gauge field A� one can construct an object,
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called the “Chern–Pontryagin” density, which is a total derivative. Namely

Tr
�
A�	

QA�	
 D ��	��Tr

�
A�	A��

 D @���ŒA� ; (3.34)

where A�	 is the field-strength and the �ŒA� is the (Hodge dual) Chern–Simons
form constructed with A. But EL and ER are precisely field-strength tensors,
constructed with eL and eR as if they were SU.2/ gauge fields, and the operators R�C
and R�� are linear combinations of the left and right Chern–Pontryagin densities.
Therefore they are total derivatives.

We now turn to discuss RCC; 1. The basic and generic observation is that there
exist linear combinations of CCWZ invariants that are “too symmetric”, in the sense
that they reconstruct an invariant of a linearly realized G group (SO.5/, in our case)
and not just of the unbroken H . These objects are typically trivial. In Sect. 2.4.2
we already encountered some examples of this situation when we proved (see for
instance Eq. (2.118)) the existence of a relation among the two O.p0/ fermionic
operators obtained from the classification. This happened because the linear combi-
nation of CCWZ tensors on the left-hand-side of Eq. (2.118) reconstructs a singlet
under a fictitious linearly realized SO.5/ that rotates the dressed sources in the 4
and 1 as if they formed a single fiveplet.7 The Goldstone matrix used to define the
dressed sources drops because it corresponds to a transformation under this fictitious
group and therefore the result is independent of the Goldstone fields. In particular in
Eq. (2.118) it reduced to the product of two orthogonal sources and thus it vanished.
Coming back to the present case, it is not hard to identify trivial O.p4/ operators
starting from the F tensors defined in Eqs. (2.79), (2.80) and worked out explicitly in
section “Explicit CCWZ for SO.5/=SO.4/” in Appendix in Chap. 2. Let us consider

TrŒF�	F�� � D TrŒF�	F�� � D FL
˛
�	FL

˛
�� C FR

˛
�	FR

˛
�� C F4

i
�	F4

i
�� ; (3.35)

where in the first equality we exploited the fact that the Goldstone matrix we used to
dress F drops when we form, by taking the trace, a linearly realized SO.5/ singlet.
Clearly the Lorentz scalars obtained by the above tensors are not new operators
because the F ’s can be expressed in terms of E and D  d by Eq. (2.188). By
contracting the Lorentz indices with � or with two �’s and making use of Eq. (2.154)
we obtain

��	��TrŒF�	F�� � D R�C ; (3.36)

TrŒF�	F�	� D 2RCC; 1 COCC; 1 C 1

2
OCC; 2 � 1

2
OCC; 3 C OCC; 4 :

From the first line of the above equation we see once again that R�C is a total
derivative, given that Eq. (3.34) can be also applied to the Chern–Pontryagin density

7As explained at length in the previous chapter this is not the way in which the genuine non-linearly
realized SO.5/ acts. Each CCWZ operator is automatically invariant under the latter symmetry.
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constructed with the gauge source fields. The second equation allows us to relate
RCC; 1 to TrŒF2�, which has the form of a kinetic term for the source fields. When the
sources will be set to their physical value by Eq. (2.177), this term will just provide
one additional contribution to the elementary fields kinetic term we introduced in
Eq. (2.30) and therefore its only effect will be an unobservable redefinition of the
gauge coupling parameters g and g0.8 The operator RCC; 1 can thus be eliminated
in favor of the other ones in the CC category up to an unobservable parameter
redefinition. Identical considerations allow us to get rid of the operators we might
have constructed with the U.1/X source X� introduced in Sect. 2.4.2. We voluntarily
ignored X� until now, but clearly it can be used to construct the CCWZ invariants,
where it will appear as an SO.4/ singlet endowed with his own unbroken local U.1/X
symmetry. The only two O.p4/ operators with X� are F QF and the FF kinetic term,
which are respectively a total derivative and equivalent to one further redefinition
of g0.

Let us finally turn to RCC; 2, it is redundant like the other two, but for a different
reason which has to do with the equations of motion of the Goldstone bosons at
O.p2/. A generic property of perturbative theories, whose Lagrangian terms are
classified by some expansion parameter ", is that all the operators of order "n

that vanish on the O.�n�1/ equations of motion can be safely ignored because
they are actually equivalent to O.�nC1/ terms. This follows from the possibility of
performing redefinitions of the field variables, by which the operators proportional
to the lower order equations of motion can be systematically traded for higher order
terms. The expansion parameter is � D p2 in our case and we are classifying up
to O.p4/. We can thus remove from the classification all the operator which vanish
on the O.p2/ equations of motion, namely on the equations of motion obtained by
the O.p2/ Lagrangian in Eq. (2.184). Deriving these equations directly from the
Lagrangian is not completely straightforward, however we can guess the result
on symmetry basis. The equations of motions associated to the four Goldstone
boson fields must be a CCWZ tensor in the 4 of SO.4/, and of course a Lorentz
scalar. But from the classification of two derivative tensors performed in Sect. 2.3.3
and section “Explicit CCWZ for SO.5/=SO.4/” in Appendix in Chap. 2 one easily
shows that only one such term exists and therefore the O.p2/ equations of motion
are necessarily

D�di
� D 0 : (3.37)

We can thus eliminate the operator RCC; 2 from our basis.
This concludes the operator classification, which would be the right starting

point for a detailed phenomenological analysis of the indirect effects associated

8If we denote as c=.4g2
�

/ the operator coefficient, the coupling redefinition that eliminates it is
1=g2 ! 1=g2 C c=g2

�

and 1=g0 2 ! 1=g0 2 C c=g2
�

. This is best seen by first performing the field
redefinition W ! W=g and B ! B=g0 by which the coupling strength is moved to the kinetic term
normalization.
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with the composite nature of the Higgs. However this topic is currently under
development (see [21–24] for recent discussions) and it goes beyond the scope
of the present Notes. Here we will limit ourselves to illustrate two specific effects
associated with O.p4/ operators, namely a correction to the S parameter of EWPT
and the possible modification of the Higgs boson coupling to two photons. The first
effect is important because it provides a powerful phenomenological constraint on
the composite Higgs scenario. The second one is important because it is actually
absent, or more precisely it is reduced with respect to the naive expectation thanks
to the pNGB nature of the Higgs. Even if we will not discus it here, identical
considerations could be made for the Higgs coupling to gluons.

Let us start from the S parameter. It measures possible deviations from the SM of
the neutral gauge bosons propagator matrix and it is defined, with the conventions
of [25], as

OS D g2
d

dq2
…W3Bjq2D0 ; (3.38)

in terms of the transverse components of the two-point vacuum polarization
amplitudes at the tree-level order, denoted as …VV0.q2/, with two gauge bosons
V;V 0 D fW˛;Bg on the external legs. The external fields V and V 0 are taken to be the
ones that couple to the light SM quarks and leptons with unit strength, which means
that the EW couplings g and g0 are reabsorbed by a field redefinition and are carried
by the kinetic terms in this field basis. In the definition of OS it is implicitly assumed
that the couplings to vector bosons of the light matter fermions are identical the
SM ones. This qualifies OS as an “oblique” correction to the SM dynamics, namely a
correction which occurs in the 2 ! 2 reactions among light particles (precisely
measured at LEP) only through a modification of the vector boson propagators
and not of the vector bosons/matter interaction vertexes. This is typically a good
approximation in composite Higgs because we saw in Sect. 2.4.1 that the light
matter fermions are characterized by a tiny compositeness fraction. Therefore their
coupling to vector bosons is dominantly the one from the covariant derivative in
the canonical kinetic term coming from the elementary sector in Eq. (2.90), with
small corrections from the composite sector. We will elaborate more on this aspect
in the following section and in Chaps. 4 and 7, but for the moment we just ignore
non-oblique corrections and we identify the unit-coupling EW boson fields in the
definition of the vacuum polarization with the rescaled gauge sources gW˛ and g0B.

No direct correction to OS came from the non-linear �-model terms we considered
in the previous chapter because their only effect is to modify the Higgs boson
couplings while leaving the EW boson propagators identical to the SM ones.9 Such
corrections do instead arise at O.p4/, in particular from the operator OCC; 1. By

9We will discuss in Chap. 7 the oblique corrections which are radiatively induced by the modified
Higgs couplings.
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setting the Higgs to its VEV and using Eq. (2.192) it gives quadratic terms

� cCC; 1
4 g2�

�
sin2

V

f
AL
�	

˛
AR; �	

˛ C 1

4

�
3C cos

2V

f

��
AL
�	

2 C AR
�	

2
�	

; (3.39)

with AL;R; �	 as in Eq. (2.186), having estimated the operator coefficient as

� cCC; 1
4 g2�

; (3.40)

in accordance with the 1S1C power-counting in Eq. (3.23). The presence of the
minus sign is purely conventional: cCC; 1 is an unknown O.1/ coefficient and it
could have any sign from the viewpoint of our low-energy effective field theory.
This convention is adopted because cCC; 1 is typically positive when computed in
explicit models, eventually leading to a positive OS. Similar considerations hold for
the 1=4 normalization. From the mixed L–R term in Eq. (3.39) we obtain a mixed
W–B vacuum polarization, and thus

OS D cCC; 1g2

2 g2�
 D 2 cCC; 1

m2
W

m2�
: (3.41)

Both the expressions for OS reported above, in terms of g� and f or of m�, are
interesting and deserve a comment. Clearly, the second one is more compact and
it shows that the current experimental constraint on OS, which we can take to be
approximately OS . 10�3 (for references and more details, see Chap. 7), implies a
g�-independent limit

m� &
p
2 cCC; 1  2:5 TeV ; (3.42)

on the composite sector scale m�. While this is obviously not a sharp constraint
because it is subject to O.1/ uncertainties in the coefficient, it constitutes a rather
robust starting point for the construction of any realistic composite Higgs model.
It is also worth noticing that the limit could be made weaker, or stronger, by
other contributions to EWPT originating from other sectors of the theory as we
will exhaustively discuss in Chap. 7. The first OS formula in Eq. (3.41) is interesting
because we can recognize that it coincides with the well-known Technicolor result
(see for instance [26] and remember that 1=g2� � N=16�2 in our formalism) aside
from the  factor. This provides one further illustration of how the composite Higgs
is superior to Technicolor, leading to smaller new physics effects, only for small
misalignment angle  � 1 while it reduces to the latter for  D 1. A small  gives
not just a naturally SM-like Higgs boson as discussed in the previous chapter, but
also to an improved agreement with the EWPT.

We now turn to the Higgs coupling to two photons. No such coupling is induced
by any of the operators listed above and this is not hard to verify by proceeding as
follows. Given that we are interested in operators involving photons and no other
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EW bosons we can set the W and Z fields to zero obtaining, in the notation of
section “Explicit CCWZ for SO.5/=SO.4/” in Appendix in Chap. 2, gauge sources
of the form

AL
� D AR

� D e��
�3

2
; (3.43)

where � denotes the photon field and e is the electric charge, defined as 1=e2 D
1=g2C 1=g02 like in the SM. If we now look, in Eqs. (2.191), (2.192), at the unitary
gauge version of the CCWZ objects d, D  d and E out of which our operators are
constructed, we immediately see that the dependence on the photon fields drops in
all of them, aside from the field-strengths EL;R, which however become trivial

E.2/L �	 D E.2/R �	 D e ��	
�3

2
; (3.44)

and independent of the physical Higgs field h. The only non-redundant operator
with two photons thus comes from O.4/

CC; 1, which however reduces to an harmless
correction to the photon kinetic term. The h�� vertex is thus not induced by
the O.p4/ operators. This fact is an important phenomenological virtue of our
construction. If it was not the case, we might have obtained a large correction
relative to the SM, where h�� is radiatively generated and thus suppressed. Such
a correction would be already within the sensitivity of current Higgs coupling
measurements.

Being the absence of h�� such an important phenomenological property, let us
further investigate its origin, which has to do with the pNGB nature of the Higgs.
In order to understand how this comes we have to go back to Eq. (2.107), where we
declared how the EW boson sources interact with the composite sector. Since we are
only interested in photon couplings we can restrict the sources to the photon field
by Eq. (3.43), obtaining

L�int D e��
�

JL; 3
� C JR; 3

� C JX
�

�
D e��Je.m.

� ; (3.45)

where we also made use of Eq. (2.108). The full set of EW boson couplings to the
currents breaks the composite sector global group completely. However the photon
interactions displayed above preserve some symmetry transformations, namely all
and only those associated with electrically neutral generators, which commute with
the electric charge Q D T3L C T3R C X and thus leave Je.m.

� invariant. This defines
an SU.2/�U.1/ subgroup of SO.5/, whose detailed structure is however not very
important for the present discussion. What matters for us is that the generator
OT4, which is the one associated with the physical Higgs boson, is obviously
neutral and belongs to this unbroken subgroup. Being OT4 an exact symmetry, only
spontaneously broken by the composite sector, the physical Higgs component is
an exact Goldstone boson, endowed with an exact shift symmetry induced by OT4
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whose explicit action on …4 could be extracted from Eq. (2.17). It is this symmetry
that forbids the h�� vertex.

Indeed, h�� at the two-derivative order might only come (up to a CP-odd term
discussed below) from the interaction

c�e2v

m2�
h ��	�

�	 : (3.46)

The two derivatives need to be carried by two photon field strength ��	 tensors,
which is the only object we can use because of the residual QED gauge invariance.
Given that no derivative is acting on h, this term is incompatible with the shift
symmetry and thus it is forbidden.10 If instead the Higgs was not a Goldstone,
but another bound state of the composite sector, there would be no reason why
the operator (3.46) should not be present with the coefficient predicted (taking
into account the need of one insertion of the EWSB scale) by the power-counting
formula (3.23). This would give c� � 1 and thus too a strong effect in the h�� partial
width to be compatible with observations, providing further phenomenological
support to the idea that the Higgs, if composite, must be a Goldstone boson.

Notice that above argument does not imply that the operator (3.46) is exactly
absent to all orders in perturbation theory because the Higgs shift symmetry is
broken by the coupling of the other EW bosons and that an even stronger breaking
comes from the couplings �tL;R with the third family quarks. This breaking will
show up in the radiative corrections induced by loops of the elementary gauge and
fermionic fields, eventually leading to a loop-suppressed effective operator. We have
not yet discussed this kind of effects, however by dimensional analysis it is not
hard to understand that they are further suppressed with respect to Eq. (3.23) by an
additional loop factor „=16�2 times the square of the relevant coupling. We thus
expect a c� in Eq. (3.46) which, in Natural Units, is of order

c� �
�2tL;R

16�2
: (3.47)

The same loop suppression factor that is present in the SM also arises in composite
Higgs, on top of the 1=m2� reduction, making the relative correction to h�� well
under control.

The other possible h�� vertex, which is the CP-odd operator

��	��
c0
�e2v

m2�
h ��	��� ; (3.48)

10An even sharper argument would be to imagine putting the theory in an electromagnetic field
background. The operator above would induce a potential (a tadpole term) for the Higgs, which is
definitely incompatible with its Goldstone nature.
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deserves some additional comment. At a first sight one might conclude that it is
forbidden by the Higgs shift symmetry exactly like the CP-even one. However
thinking more carefully one finds an interesting subtlety. Under a constant shift
of h, which corresponds to a global SO.5/ transformation, the CP-odd operator
is not invariant but its variation is proportional to � Q� , which is a total derivative.
Therefore, at least at the global level and for field configurations with appropriate
boundary conditions, the operator leads to an invariant action and is thus allowed
in principle. Nevertheless, we did not encounter it in our classification, but this
might just be because we are only writing down strictly invariant Lagrangian terms,
constructed out of the d and e CCWZ symbols, which respect also the local version
of the SO.5/ group. There is only one term which might not have this structure
and generate the CP-odd h�� vertex in Eq. (3.48): the gauged Wess–Zumino–
Witten term [27–29]. This is definitely irrelevant for the minimal composite Higgs
model because it turns out that the Wess–Zumino–Witten term does not exist for
the minimal coset SO.5/=SO.4/, but it could lead to interesting phenomenological
consequences for non-minimal cosets. Notice that the Wess–Zumino–Witten term is
intrinsically linked to the presence of anomalies in the global group. Therefore the
theorem according to which h�� is suppressed by the Goldstone symmetry is not
violated. The point is that the anomaly actually corresponds to a sizable breaking of
the symmetry.

3.2.2 Order p Fermionic

Let us now come to the fermionic sector, with the purpose of extending to O.p/
the operator classification of Sect. 2.4.2. The result and its physical implications
strongly depend on the SO.5/�U.1/X quantum numbers of the fermionic operators
that realize partial compositeness; the two options of a spinorial and of a fundamen-
tal representation will be discussed in turn.

In order to properly read the implications of the symmetries, the elementary
SM fields must be embedded into fermionic source multiplets with the same
quantum number of the corresponding operators. In the case of the spinorial 41=6

representation the four embeddings QtL , TR, QbL and BR are defined in Eq. (2.133).
However the bottom sector sources QbL and BR will not be relevant for the present
discussion because their couplings �bL;R to the composite sector are typically small,
much smaller than those of the top sector �tL;R , as needed to reproduce the small
bottom quark mass. The effective operators constructed with the bottom sources are
thus power-counting suppressed (3.23) and negligible in comparison with the ones
from the top sources. They can still be relevant, but only if they trigger qualitatively
new effects as we will see happening in the case of the fundamental representation.
For the spinorial, the relevant objects are thus QtL and TR, out of which a total of 4
CCWZ multiplets can be obtained by dressing the sources with the Goldstone matrix



3.2 Higher Derivative Operators 101

as explained in Sect. 2.4.2. These are four SO.4/ ' SU.2/L �SU.2/R doublets11

Q2L
tL ; Q2R

tL ; T2L
R ; T2R

R ; (3.49)

with a common U.1/X charge of 1=6. In the above equation we denoted, for
shortness, the .2; 1/ and .1; 2/ representations as 2L and 2R, respectively. We will
now classify the invariant operators constructed with two of those sources and
one derivative, which can be either carried by the d� symbol or by the covariant
derivative D�.

There are four Hermitian operators with d�

OQ
C D Q

2L
tL �

�d.2/� Q2R
tL C Q

2R
tL �

�d.2/�


Q2L

tL ;

OQ
�; 1 D i Q

2L

tL
��d.2/� Q2R

tL
� i Q

2R

tL
��d.2/�



Q2L

tL
;

OTC D T
2L
R �

�d.2/� T2R
R C T

2R
R �

�d.2/�


T2L

R ;

OT�; 1 D i T
2L

R �
�d.2/� T2R

R � i T
2R

R �
�d.2/�



T2L

R ; (3.50)

expressed in terms of the d� symbol in the 2 � 2 matrix representation of
section Explicit CCWZ for SO.5/=SO.4/ in Appendix in Chap. 2 (see Eq. (2.181)),
which is typically the most convenient one when dealing with the spinorial
representation. The operator labeling refers to their intrinsic PLR parity, which is
easily worked out by noticing that d.2/� transforms into its conjugate while the two
doublets get interchanged by PLR as shown in section “Discrete Symmetries” in the
Appendix. The CP quantum number will instead not be specified for the fermionic
operators.

By acting with a covariant derivative, four more operators can be formed

RQ
C D i Q

2L
tL �

�D�Q2L
tL C i Q

2R
tL �

�D�Q2R
tL ;

OQ
�; 2 D i Q

2L
tL �

�D�Q2L
tL � i Q

2R
tL �

�D�Q2R
tL ;

RTC D i T
2L
R �

�D�T2L
R C i T

2R
R �

�D�T2R
R ;

OQ
�; 2 D i T

2L
R �

�D�T2L
R � i T

2R
R �

�D�T2R
R : (3.51)

Notice that the covariant derivative D� acting on the fermionic fields is not only
given by the CCWZ one we introduced in Sect. 2.3 (see for instance Eq. (2.87)).
The latter takes care of the non-linearly realized SO.5/ but other terms are needed
to account for the unbroken U.1/X and SU.3/c color local groups, involving the

11The definition of these objects is not explicitly reported in Sect. 2.4.2, it is however completely
analogous to the one given in Eq. (2.113) for the case of the fundamental representation.
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corresponding sources, under which the fermionic fields are charged. The complete
covariant derivatives are

D�Q2L
tL D

�
@� � i e.2/L � � i

1

6
X� � i gS G�

	
Q2L

tL ;

D�Q2R
tL D

�
@� � i e.2/R � � i

1

6
X� � i gS G�

	
Q2R

tL ; (3.52)

and analogously for TR. The 1=6 factor reflects the U.1/X charge of the fields and
G� D Ga

��a=2 are the gluon fields in the matrix notation, acting on the triplet color
index of the source. The 2� 2matrix representation for the e� symbol, decomposed
in left and right components as in section “Explicit CCWZ for SO.5/=SO.4/” in
Appendix in Chap. 2, has been used to express the CCWZ part of the covariant
derivative.

The two operators RQ
C and RTC are redundant, as the notation suggests, and by

following the same logic of the previous section it is easy to understand why. The
point is that there exist two operators, constructed by working directly with the
source fields rather than with the dressed ones, which have a trivial effect on the
theory. These two operators are12

i QtL�
�D�QtL D i qL�

�D�qL ;

i TR�
�D�TR D i tR�

�D�tR ; (3.53)

and they just reduce, when the fermionic and gauge sources are restricted to their
physical values, to corrections of the elementary quark fields kinetic terms. Such
corrections can be eliminated by a rescaling and reabsorbed in an unobservable
redefinition of the elementary/composite interaction couplings �tL and �tR . The ones
above are not new operators, but instead they are linear combinations of RQ;T

C and

OQ;T
C . This is immediately verified by inverting the definition of the dressed sources

obtaining

QtL D U4Œ…�  fQ2L
tL ; Q2R

tL gT ;
TR D U4Œ…�  fT2L

R ; T2R
R gT ; (3.54)

where U4 is the Goldstone matrix in the spinorial we derived in section “Explicit
CCWZ for SO.5/=SO.4/” in Appendix in Chap. 2. By plugging into Eq. (3.53),
remembering that the definition of d and e (2.69) applies to any representation

12The covariant derivative here is acting on the sources, which transform linearly under SO.5/ and
not like the CCWZ objects do. Therefore D� D @� � i A� � i QXX� � i G�, with no e� symbol
appearing.
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including the spinorial, we obtain

i QtL�
�D�QtL D RQ

C C
1

2
p
2

OQ
C ;

i TR�
�D�TR D RTC C

1

2
p
2

OTC ; (3.55)

showing that RQ;T
C are redundant as anticipated.

The operators above trigger a number of interesting physical effects, among
which further modifications of the Higgs coupling to fermions on top of those
outlined in Sect. 2.4.2 and corrections to the W-t-b vertex Vtb. Here we will limit
ourselves to discuss their effect on the Z boson coupling to the left-handed bottom,
gbL , which was precisely measured at LEP. We focus on OQ

C, which is the simpler

to deal with. Other contributions of the same order are expected from OQ
�;2 but not

from OQ
�;1 which is CP-odd. The corresponding TR source operators modify the top

coupling to the Z, which however is not yet measured well enough to be relevant.
After going to the unitary gauge and setting the sources to their physical values we
find

OQ
C D

gp
2cw

 bL�
�Z�bL C : : : ; (3.56)

which sums up with the SM vertex which originates from the elementary kinetic
term in Eq. (2.90), leading to corrections.

In order to quantify these corrections we rely on the 1S1C power counting (3.23)
estimate of the operator coefficient, which in this case leads to two powers of the
�tL coupling from the two source insertions, a prefactor of 1=g2� and no m� since the
operator has dimension four. Therefore we have

ıgbL '
�
�tL

g�

�2
 ; (3.57)

having stripped out a g=cw factor in the definition of the coupling as customary
in the literature (for more details, see Sect. 7.2). This correction is experimentally
bounded at the per-mille level, implying a constraint

 .
�

g�
�tL

�2
 10�3 : (3.58)

This limit can be more or less stringent, depending on the size of �tL . However
�tL controls the generation of the top quark Yukawa as in Eq. (2.104) (in accordance
with the more quantitative results of Sect. 2.4.2), namely

yt ' �tL�tR

g�
; (3.59)
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therefore it is not a completely free parameter. The two options which is worth
considering are

.I/ �tR ' �tL '
p

ytg� ; .II/ �tR ' g�; �tL ' yt ; (3.60)

for which the constraint, using g� < 4� and yt ' 1, becomes

.I/  . g�
yt
 10�3 < 1:3  10�2 ; .II/  . g2�

y2t
 10�3 < 0:16 : (3.61)

Further lowering �tL unfortunately is not an option, so that the coupling pattern
.II/ is already the most favorable one, because of two reasons. First, by applying
Eq. (3.59) we would conclude that �tL < yt requires�tR > g�, i.e. that an elementary
coupling becomes larger than the composite one. This goes against our basic
philosophy, outlined already in the Introduction, according to which the elementary
sector must be a mild deformation of the composite one, characterized by a weaker
interaction strength. Second, and more concretely, we notice that Eq. (3.59) is an
approximate formula that looses its validity when �tL;R > g�. In this case the more
complete expression for yt in Eqs. (2.104) and (2.103) should be considered, which
displays how keeping raising �tR above g� doesn’t help because the compositeness
fraction sin � t

R saturates to one. From the complete formula one can derive the upper
limit �tL < yt, which is already saturated with the choice .II/ showing that no
improvement is possible.

The bound from ıgbL is extremely strong in case .I/ of Eq. (3.61), it requires
two digits of unnatural cancellation in , but it seems tolerable in case .II/, not far
from the one obtainable from OS (3.41) for maximal g�. However the estimate .II/
is too optimistic, for two reasons. First, the favored coupling pattern is not .II/ but
.I/, because of the structure of the Higgs potential, which will be discussed in the
following section, and the need of obtaining a realistic VEV for EWSB. Second, the
study of the Higgs potential will also reveal that g� should not be maximal for the
Higgs to be naturally light. The limits in Eq. (3.61) rapidly deteriorate for g� < 4� ,
carrying the model into the unnatural regime.

The strong bound on ıgbL , which we have seen emerging for fermionic operators
in the spinorial representation, leads us to discard this possibility and to search for
alternatives where ıgbL corrections are smaller. Interestingly enough, it is sufficient
to go to the next-to-minimal representation, the fundamental, to dramatically
improve the situation.13 In this case, two sources QtL and TR are introduced in the
top sector, both in the 52=3, and used to form four dressed source in the 42=3 and in

13The concept of minimality based on the dimension of the representations is rather questionable.
From the viewpoint of a strongly-coupled microscopic theory it is hard to tell what is “minimal”
or “easier” to be realized. In the case at hand, it is enough to have composite sector constituents
not living in the spinorial, but only in representations with congruency class (see e.g. [30]) equal to
zero, for not being capable to form composite operators in the spinorial representation and being
forced to consider alternatives.
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the 12=3. The complete set of O.p/ operators reads

OQ
C; 1 D .Q

4
tL
/i�

�di
�Q1

tL
C Q

1
tL
��di

�.Q
4
tL
/i ;

OQ
C; 2 D i .Q

4
tL
/i�

�di
�Q1

tL
� i Q

1
tL
��di

�.Q
4
tL
/i ;

OQ
C; 3 D i Q

1
tL�

�D�Q1
tL ; (3.62)

plus the corresponding terms with TR. In the above equation we have already
dropped two redundant operators, associated with the source kinetic terms.

It is easy to verify explicitly that none of the operators in Eq. (3.62) contributes
to ıgbL , neither directly by a Z-b-b vertex nor indirectly through a correction of the
bL kinetic term. Large effects like the ones in Eq. (3.57) are thus absent in the case
of the fundamental representation. Corrections to gbL will emerge at higher orders in
the derivative or loop expansion and, as we will see below, from operators involving
the bottom sector sources. The cancellation of ıgbL appears miraculous at this point,
however it can be nicely understood by symmetries. This has to do with the fact that
all the operators we found are accidentally PLR even, and to the fact that PLR is not
broken by the bL embedding into the sources. Namely, if we look at Eq. (2.116) and
compare it with Eq. (3.145) we see that PLR is preserved if bL is regarded as an odd
field. The tL embedding does instead break PLR but this will not show up in the Z-b-
b vertex at this order. PLR, as we will see in section “The Custodial Symmetries” in
Appendix in Chap. 7, is not even broken by the Higgs VEV, it survives in the low-
energy bottom Lagrangian and it ensures ıgbL cancellation in a way that is similar to
the cancellation of the OT oblique parameter due to custodial SO.3/c. For this reason,
PLR is called a custodial symmetry for Z-b-b [31]. The situation is different for the
operators constructed with the bottom sector sources QbL in which, as Eq. (2.127)
shows, the bL embedding breaks PLR. One operator that induces ıgbL is, for instance

.Q
4
bL
/i�

�di
�Q1

bL
C Q

1
bL
��di

�.Q
4
bL
/i D gp

2cw

 bL�
�Z�bL C : : : (3.63)

Notice that the correction emerges in spite of the fact that the operator is PLR even,
the reason being that the embedding breaks the symmetry as previously explained.

Corrections coming from the operators constructed with the bottom sources like
the one in Eq. (3.63) are much less dangerous than those from the top sector because,
according to the power counting in Eq. (3.23), they are suppressed by the bottom
coupling. The correction is now estimated to be

ıgbL '
�
�bL

g�

�2
 ; (3.64)

where the parameter �bL can easily be much smaller than �tL as it serves to give the
mass to the bottom quark and not to the top. Assuming for simplicity �bL � �bR , the



106 3 Beyond the Sigma-Model

estimate in Eq. (2.104) gives now �bL � pybg� so that

ıgbL '
yb

g�
 ' 

g�
3  10�2 : (3.65)

Even for a rather small g� � 2 and mild tuning  � 0:1 the correction is close
to the experimental bound of 10�3. The effect is thus small enough to be under
control, but still potentially relevant for a quantitative compatibility with EWPT. A
careful discussion of this and other contributions to ıgbL , in the context of explicit
models where the effects can be calculated and not just estimated as we did here, is
postponed to Sect. 7.2.

This concludes our description of the O.p/ fermionic Lagrangian in the case
of the spinorial and of the fundamental representations. This is representative of
the generic situation and straightforwardly generalizable to other representations.
On top of illustrating the operator classification technique, the discussion led us to
a phenomenological criterion to identify the most suitable representations for the
fermionic operators. They have to be such that large corrections to gbL from the
top sector sources operators are forbidden, like for the fundamental representation
and unlike the spinorial. Even if we postponed the discussion of this point to
section “The Custodial Symmetries” in Appendix in Chap. 7, we have anticipated
that the cancellation relies on the PLR accidental symmetry of the O.p/ operators.
Concerning the other representations we considered in Sect. 2.4.2, it turns out that
the case of a 142=3 ˚ 12=3 behaves like the fundamental and ıgbL is suppressed in
exactly the same way. The case of a 10 is slightly different because PLR does not
emerge automatically as an accidental symmetry, but it needs to be imposed as a
symmetry of the composite sector. If this is done the cancellation holds, at the price
of an additional assumption which instead is not needed in the other cases.

3.3 The Composite Higgs Potential

The origin and the structure of the Higgs potential, out of which the composite Higgs
field acquires a VEV producing EWSB and the Higgs particle acquires a mass, is the
last subject to be discussed in the present chapter. The generation of the potential is
definitely a phenomenon that goes “beyond the sigma-model”, though for a slightly
different reason than the effects previously discussed in this chapter. Rather than
from higher-derivative operators, it is due to lower (zero) derivative ones which
were forbidden in the �-model by the Goldstone symmetry. Rather than studying
the implications of the Goldstone symmetry group G on higher derivative operators
we must now study the implications of the explicit breaking of the symmetry on the
operators of lowest possible derivative order. Notice that the seeds of such breaking
have been already introduced in the theory, in the form of the couplings of the
elementary sector fields to the composite sector operators. Given that the former
fields do not come in multiplets of the G group, their couplings (with few remarkable
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exceptions) break the symmetry and thus are capable to trigger the generation of the
Higgs potential.

The discussion is organized in two steps. First, in Sects. 3.3.1 and 3.3.2, we will
outline the technical and conceptual tools through which the operators contributing
to the potential can be classified and estimated within our assumptions, specified in
Sect. 3.1, on the dynamics of the composite sector. Provided the elementary sector
couplings are weak, much weaker than the composite sector interaction strength
g�, the G group is a valid and predictive approximate symmetry, with powerful
implications on the allowed form the potential can assume. At the second step,
in Sect. 3.3.3, we will discuss how and at what price, in terms of fine-tuning, a
phenomenologically viable potential can be obtained, giving rise to realistic EWSB
and to the correct mass for the Higgs boson. All these aspects will be illustrated in
the case of the minimal coset where G D SO.5/ and H D SO.4/, however they are
of general validity and straightforwardly generalizable to non-minimal cosets.

3.3.1 Higgs Potential Characterized

Given that the Higgs potential can only come from the explicit breaking of the
Goldstone symmetry, the right starting point for the discussion is to identify the
interactions that realize this breaking in our construction. The composite sector is
perfectly invariant: as discussed at length, the spontaneous symmetry breakdown
merely realizes the symmetry in a non-linear fashion, it doesn’t really break it.
Explicit breaking only comes from the elementary sector and the way in which this
breaking is communicated to the composite sector, where the Higgs field originates,
is from the various elementary/composite interactions we have in our theory. In
particular, we first focus on the gauge interactions specified in Eqs. (2.107), (2.68)
and (2.108). These read

Lgauge
int D g W�; ˛J� ;˛L C g0B�J�; 3R C g0B�J�X : (3.66)

Until now we found convenient to collect the physical W and B fields into the
sources AA

� and X� and to carry all their components, including the non-physical
ones, in the operator classification. We will now instead restrict to the physical fields
from the very beginning, finding another way, namely the method of spurions, to
study the implications of the Goldstone symmetry.

Let us first consider the terms in Eq. (3.66) that involve the hypercharge field
B� and the corresponding coupling g0. The last term is clearly harmless because the
U.1/X current J�X is an SO.5/ singlet. Coupling it to B� does not break the Goldstone
symmetry and therefore that term is not capable to generate the potential and it can
be ignored in the present discussion. The other term instead breaks the symmetry,
but we can rewrite it in the formally invariant fashion

L=Gg0
D g0B�J3R; � � B�G0

AJA
� ; (3.67)
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where A runs over the ten components of the SO.5/ global current multiplet and G0
A

is what we call a “spurion”. The one above is a mere rewriting of the interaction
Lagrangian. Therefore the only non-vanishing entry of the G0 vector is the one
associated with the generator T3R, and it is equal to g0. By switching to a matrix
notation, the physical value assumed by the spurion is expressed as

G0 � G0
ATA D g0T3R : (3.68)

The rewriting in Eq. (3.67) becomes useful if we imagine for a moment to
promote all the ten spurion components to independent parameters, making G0 a
generic adjoint matrix of couplings. Any result we might obtain in this extended
theory will reproduce the ones we are interested in once the coupling matrix is
restricted to its physical value in Eq. (3.68). The advantage of this approach is that
drawing the implications of the SO.5/ symmetry is much simpler in the extended
theory than in the original one, because the former is SO.5/ invariant if we assign
to the spurion a transformation property14

G0 ! g  G0  g
 ; g 2 SO.5/ : (3.69)

The spurion transformation, in the adjoint representation, compensates for the
current operators transformation making Eq. (3.67) invariant. Specifically, this
means that by acting with a symmetry transformation on any correlator computed
within the extended theory, with a certain value G0 of the coupling matrix, we will
end up with the result we would have obtained within the same theory but with a
coupling matrix rotated according to Eq. (3.69).15 Therefore all the correlators, and
in turn all the physical quantities we might extract out of them, must depend on the
spurion matrix in a special way, such as to stay invariant under the simultaneous
action of SO.5/ on the field variables and on the spurion. This is to say that we can
still use SO.5/ as a symmetry to classify the operators. The symmetry of course
is broken, but only at the very end of the calculation when the spurion is set to its
physical value in Eq. (3.68), which is not SO.5/-invariant.

An alternative, pedagogically valid but potentially misleading interpretation of
the method of spurions goes as follows. We can imagine G0 being a collection
of scalar fields in the adjoint representation, artificially introduced in the theory
and coupled to B� and J� as in Eq. (3.67). Through a suitably designed scalar
potential we might give it a VEV that equals the physical value of the spurion in
Eq. (3.68). On this vacuum, the original B–J interaction is reproduced. In view
of this interpretation, the physical value of the spurion is sometimes called the

14Here and in what follows we only deal with the global version of the group, differently from the
previous analyses where we considered its uplift to a local invariance by making it act also on the
gauge sources.
15More precisely, if we act with g on the correlators the result we get is the one obtained with the
spurion matrix rotated by the inverse transformation g�1.
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“spurion VEV”. Notice that this interpretation should be taken with care, keeping
clear in mind that the validity of the spurion method relies in no way on the physical
existence of new extra scalar degrees of freedom, neither of light ones which appear
explicitly in the low-energy effective theory nor of heavy ones above the cutoff.

Now that the foundations of the spurion method are clear, we come to its
application. The goal is to classify the operators constructed with the spurions
and the Goldstone bosons (plus possibly other physical fields of the theory) that
are invariant under the non-linearly realized SO.5/ symmetry. We can make this
classification systematic by introducing the concept of “dressed spurion”, in full
analogy with the one of dressed sources we discussed in Chap. 2. Just as in the latter
case, the basic observation is that the Goldstone matrix transforms with g 2 SO.5/
on the left and with h 2 SO.4/ on the right, namely

U ! g  U  h�1 : (3.70)

Therefore by acting with U�1 we can turn an object with SO.5/ indices into
a dressed one, which transforms with the CCWZ SO.4/ matrix h. The dressed
object can be split into several SO.4/ irreducible representations, according to the
decomposition in SO.4/ of the original SO.5/ multiplet. The dressed G0 spurion is

G0
D � U
  G0  U ; (3.71)

and it decomposes as

10 D .3; 1/˚ .1; 3/˚ .2; 2/ ; (3.72)

into three separate SO.4/ multiplets. Explicitly, these are

.G03L
D /˛L � TrŒG0  TL; ˛L � ;

.G03R
D /˛R � TrŒG0  TR; ˛R � ;

.G04
D/i � TrŒG0  OTi� : (3.73)

In the absence of extra symmetries, each multiplet can be employed independently
in the construction of the invariant operators.

Let us now specialize our discussion to the Higgs potential. It is made of
operators involving the Goldstone matrix, no derivatives, plus of course some
insertion of the spurions that carry the explicit breaking of the Goldstone symmetry.
The physical value of the spurion G0 is proportional to the hypercharge coupling
g0, which is a “weak” coupling. We thus intuitively expect that we might be
allowed to work in a g0 expansion, with the largest contribution to the potential
coming from the operators with the smallest number of spurions. This intuition will
be confirmed, later in the present section, by the power-counting estimate of the
operator coefficients. There are no operators of O.g0/, because of two independent
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reasons. The first one is that no singlet is present in the decomposition (3.72) of
the dressed spurion under SO.4/. If a singlet appeared, as it would in non-minimal
cosets with U.1/ factors in the unbroken group, we might have taken it as a candidate
operator. In the current situation instead two or more spurion multiplets have to be
multiplied to form and invariant. The second reason has to do with a Z2 symmetry
of the elementary sector, the operation B� ! �B� on the hypercharge gauge field.16

This can be taken to act on the spurion as

G0 ! �G0 ; (3.74)

while leaving invariant the whole composite sector and thus in particular the J�
current. Being a symmetry of the interaction (3.67), this “elementary” Z2 parity
must be respected by the operators, very much like the composite sector SO.5/
group. No operator with and odd number of G0’s should thus be considered, not
even if SO.5/ invariant. The general idea is that the spurion is an object that ensures
the communication among two sectors: the elementary and the composite one. As
such it can inherit symmetries from both sides, leading to extra selection rules. Other
examples of elementary symmetries will emerge in the forthcoming discussion.

Three operators can be written at O.g0 2/, corresponding to the SO.4/ singlets one
can form with the three irreducible components of the dressed spurion in Eq. (3.73).
These are conveniently expressed as

Og0 2C D .G04
D/i.G04

D/
i ;

Og0 2� D .G03L
D /˛L.G03L

D /
˛L � .G03R

D /˛R.G03R
D /

˛R ;

Rg0 2C D .G03L
D /˛L.G03L

D /
˛L C .G03R

D /˛R.G03R
D /

˛R ; (3.75)

with Og0 2� being odd and the others even under PLR. As usual, when dealing with
dressed objects attention must be paid to possible redundancies, associated with
combinations of operators which are “too symmetric” to be relevant. In the present
case Rg0 2C is redundant, because of the identity

10X
AD1

˚
TrŒG0  TA�

�2 D
10X

AD1

˚
TrŒG0

D  TA�
�2 D Rg0 2C C Og0 2C : (3.76)

The first term of the equality is independent of the Higgs, thus it does not contribute
to the potential but only to the vacuum energy. It is equal to the second one (which
in turn is immediately rewritten as the sum of the two even operators) because it
is invariant under a fictitious linearly-realized SO.5/ and the dressing procedure

16The breaking of this symmetry due to the coupling with the elementary quarks plays no role
in this discussion. It would become relevant only if we had to discuss mixed contributions to the
potential from both the quark and the gauge field spurions.
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precisely amounts to a rotation in this group. Being proportional to Og0 2C up to a
constant, Rg0 2C is redundant and can be eliminated from the classification. Notice
that the redundancy is associated with the SO.5/ singlet one can form by employing
directly the spurion, rather than its dressed version. Given that a unique singlet can
be formed by two powers of G0 2 10, only one redundancy is expected at O.g0 2/,
the one outlined above.

The power and the simplicity of our result is better appreciated when we set
the spurion to its physical value in Eq. (3.68) and we go to the unitary gauge in
Eq. (2.169), obtaining

Og0 2C D
g0 2

2
sin2

H

f
; Og0 2� D g0 2 cos

H

f
; (3.77)

with H D V C h denoting the real neutral Higgs field component (times
p
2). We

have found that the O.g0 2/ potential is a linear combination of these two operators,
therefore its functional form is fixed, up to numerical coefficients, to be

Vg0 2 / cC  g0 2

2
sin2

H

f
C c�  g0 2 cos

H

f
: (3.78)

If the composite sector happens to be invariant under PLR, the result would further
simplifies since c� D 0.

The classification is straightforwardly extended to other sources of explicit
breaking, starting from the one associated with the gauging of the SM SU.2/L
subgroup, i.e. from the W–JL term in Eq. (3.66). We rewrite the latter as

L=Gg D gW�;˛J�; ˛L � W�; ˛G˛A J�;A ; (3.79)

in terms of three spurions in the adjoint, with physical value

G˛ � G˛A TA D g T˛L ; (3.80)

where ˛ D 1; 2; 3. Just like we did for G0, dressed spurions can be defined as in
Eq. (3.71), decomposed in SO.4/ multiplets as in Eq. (3.73) and eventually used
to construct invariants. The only difference with the previous case is that now we
have three spurions rather than one, all of them are in the same representation. One
might thus construct singlets by pairing them in all possible combinations, leading
to a proliferation of the number of invariants. However one must also take into
account the existence of an SU.2/ global symmetry of the elementary sector, call it
SU.2/E, under which the W˛’s form a triplet while the composite sector is invariant.
This is nothing but the global version of the local SU.2/L restricted to act on the
elementary fields only, under which the elementary sector Lagrangian in isolation
is exactly invariant. Analogously to the elementary Z2 discussed above, SU.2/E
can be formally uplifted to a symmetry of the interactions by assigning suitable
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transformation rules to the spurions, namely by taking the index ˛ in the triplet.17

This symmetry must be also respected, on top of the SO.5/ group, therefore the only
allowed operators are

Og2C D
3X

˛D1
.G˛4

D/i.G˛
4
D/

i ;

Og2� D
3X

˛D1
.G˛3L

D /˛L.G˛
3L
D /

˛L �
3X

˛D1
.G˛3R

D /˛R.G˛
3R
D /

˛R : (3.81)

A third one, which has not been reported, is fully analogous to Rg0 2C and it is
redundant for a very similar reason.

After setting the spurions to their VEV and going to the unitary gauge we obtain

Og2C D 3 g2

2
sin2

H

f
; Og2� D �3 g2 cos

H

f
: (3.82)

The O.g2/ contribution to the potential is thus found to be

Vg2 / cC  3 g2

2
sin2

H

f
� c�  3 g2 cos

H

f
; (3.83)

up to the unknown constants cC and c�. Notice that the latter constants are not
new parameters, they are just the same ones that appear in the O.g0 2/ potential in
Eq. (3.78). This is because each of the three G˛ components is completely identical
to G0, from the viewpoint of the composite sector. Namely they all couple to the same
operator, i.e. the global current multiplet. Of course they differ for their physical
value but this difference is washed out when the spurion is regarded as a matrix
of independent couplings. Thus the operators written in terms of G˛ and G0 must
have the same coefficient, from which the equality of c˙ in Eqs. (3.78) and (3.83).
Actually there is a difference between G and G0: the fact that they are coupled to the
Abelian B and to the non-Abelian W˛ fields, respectively. The W˛ self-interactions
can differentiate the two contributions to the potential, but definitely not at O.g2/
as the self-interaction would carry further powers of g. Furthermore it will become
clear in the following that self-interactions can play a role only at high order in the
loop expansion.

While interesting and illustrative of the spurion method, the gauge contributions
to the potential derived above are of limited phenomenological relevance as they

17The spurion VEV breaks SU.2/E to its diagonal combination with the SU.2/L subgroup of SO.5/
and this latter unbroken symmetry is the SM SU.2/L . Imposing the spurionic SU.2/E automatically
ensures the invariance of the potential under the SM group even after the spurions are set to their
physical values.
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are typicallly overwhelmed by other terms, in particular by those emerging from the
top quark sector. The elementary/composite couplings �tL;R of the third generation
qL and tR are indeed, usually, the largest sources of Goldstone symmetry breaking
in our theory and thus they give the dominant contribution to the potential. The
physical reason to have them large is of course the need of reproducing the large top
Yukawa (see Eq. (3.59)), as discussed at length in Sect. 3.2.2. The top contribution
to the potential can be easily worked out by spurion analysis, however differently
from the gauge one it is not universal: it depends on the quantum numbers of the
composite sector operators qL and tR mix with. The two cases of mixing with two
5’s or with a 14 and a 1 will be discussed in turn.

In the case of the 5˚5, see Eqs. (2.110) and (2.115), the G-breaking interactions
read

L=G�t
D q˛L.ƒL/

I
˛.OL

F/I C tL.ƒR/
I.OR

F/I C h.c. ; (3.84)

where the spurionsƒL;R are in the 5�2=3 of SO.5/�U.1/X18 and their physical values
are

.ƒL/
I
˛ D

�tLp
2

�
0 0 Ci C1 0
Ci �1 0 0 0

	 I

˛

;

.ƒR/
I D �tR Œ 0 0 0 0 1 �

I : (3.85)

As in the gauge sector, elementary spurionic symmetries must be also considered in
the operator classification. These are a U.2/LE group under which q˛L form a doublet
of, say, unit charge, and consequently .ƒL/˛ is a conjugate doublet with charge �1,
and a U.1/RE phase shift of tR and ƒR. Taking these symmetries into account, only
two invariants are found at O.�2tL;R/

O�2L
D .ƒ1

L;D
�
/˛.ƒ1

L;D/˛ ; O�2R
D ƒ1

R;D
�
ƒ1

L;D ; (3.86)

where ƒ1
L;D and ƒ1

L;D are the singlet dressed spurions, emerging from the decom-
position

5 D 4˚ 1 : (3.87)

Explicitly, the dressed spurion multiplets in the 4 and in the 1, for both chiralities,
are defined as

�
ƒ4

D

ƒ1
D

	
� U
 ƒ ; (3.88)

18The U.1/X charge must be opposite to the one of the operators for the interaction to be invariant.
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Two invariants could have been written, for each chirality, by paring two 4 or two 1
components. However one combination of the two, which corresponds to the SO.5/
singlet one can form out to two 5’s, only contributes to the vacuum energy and can
be dropped. This is why we are left with a total of two operators in Eq. (3.86). On
the spurion’s VEV, and in the unitary gauge, we find19

O�2L
D �tL

2

2
sin2

H

f
; O�2R

D �tR
2 cos2

H

f
; (3.89)

and thus the potential is expressed as

V5˚5
�2
/
�cL

2
�2tL � cR�

2
tR

�
sin2

H

f
C const. ; (3.90)

in terms of two unknown constants cL and cR.20

The above result is surprising in one aspect, which is relevant for phenomenology
as we will see in the following section. Namely, it shows that the O.�2/ potential has
a fixed functional dependence on the Higgs field. In particular it is proportional to
sin2 H=f and the only freedom we have is to choose, by varying �tL;R or by acting on
the composite sector that controls cL;R, the size and the sign of the overall coefficient.
Therefore this contribution to the potential, which we claimed to be the dominant
one, can only have a minimum at H D 0 or H D �f=2 (modulus �f ), and thus in no
case it gives a realistic theory for which we need  D sin2hHi=f � 1. This implies
that the O.�2/ term, though formally dominant, must be made accidentally small
such as to compete with other contributions allowing for a tunable  parameter.
In view of this fact, which will be discussed in details in Sect. 3.3.3, we should
extend our classification to the first subleading order, i.e. to O.�4L/, O.�4R/ and
O.�2L�2R/ operators.21 A total of 6 O.�4L/ invariants exist, and the same amount
of O.�4R/. However 2 of them are redundant and can be removed, in each category,
by exploiting the existence of two full SO.5/ singlets in the tensor product of two
ƒ times two ƒ� spurions. Similarly at O.�2L�2R/ we count ten singlets and three
redundancies, for a total of seven operators. Fortunately listing all these operators
is not necessary because many of them end up having the same trigonometrical
structure up to constant vacuum energy terms. A complete coverage of the possible

19The phases of �tL;R can be reabsorbed by a redefinition of the elementary quark fields, we thus
take these parameters real.
20A priori, cL and cR are completely unrelated because the two chiral fermionic operators OL

F and
OR

F the spurions couple to are distinct operators, in spite of having the same quantum numbers
under the global group. If they were related by some other symmetry, for instance by spatial parity,
we would have cL D cR, but in general this is not the case.
21Symmetries forbid O.�3/ terms.
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structures is provided by the following terms

O�4L; 1
D
h
.ƒ1

L;D
�
/˛.ƒ1

L;D/˛

i2 D �4tL
4

sin4
H

f
;

O�4L; 2
D
h
.ƒ1

L;D
�
/˛.ƒ1

L;D/˛

i h
.ƒ4

L;D
�
/˛i .ƒ

4
L;D/

i
˛

i

D �4tL
4

�
4 sin2

H

f
� sin4

H

f

	
;

O�4R; 1
D
h
ƒ1

R;D
�
ƒ1

R;D

i2 D �4tR cos4
H

f
D �4tR

�
1 � 2 sin2

H

f
C sin4

H

f

	
;

O�4R; 2
D
h
ƒ1

R;D
�
ƒ1

R;D

i h
.ƒ4

R;D
�
/i.ƒ

4
R;D/

i
i
D �4tR

�
sin2

H

f
� sin4

H

f

	
;

O�2L�
2
R; 1
D
h
.ƒ1

L;D
�
/˛.ƒ1

L;D/˛

i h
ƒ1

R;D
�
ƒ1

R;D

i

D �2tL�
2
tR

2

�
sin2

H

f
� sin4

H

f

	
;

O�4R; 2
D
h
.ƒ1

L;D
�
/˛.ƒ1

L;D/˛

i h
.ƒ4

R;D
�
/i.ƒ

4
R;D/

i
i
D �2tL�

2
tR

2
sin4

H

f
: (3.91)

Up to constants, all the invariants are linear combinations of sin2 and sin4 and thus
the complete O.�4/ potential can be expressed as

V5˚5
�4
/ .cLL�

4
tL
C cRR�

4
tR
C cLR�

2
tR
�2tL/ sin2

H

f

C.c0
LL�

4
tL C c0

RR�
4
tR C c0

LR�
2
tR�

2
tL/ sin4

H

f
: (3.92)

By properly adjusting, or tuning, the two terms, taking of course also into account
the O.�2/ contributions in Eq. (3.90), realistically small values of  can now be
obtained.

The case of elementary quarks mixing to a 14˚ 1 is considerably different. The
elementary/composite interaction takes the form

LInt D �tL qLOL
14 C �tR tROR

1 C h.c. ; (3.93)

where the fermionic operator coupled to the qL doublet transforms in the 142=3 of
SO.5/�U.1/X, while the one coupled to tR is in the 12=3. Being the latter a singlet,
the tR mixing does not break the Goldstone symmetry and therefore the �tR coupling
is not capable, in this case, to trigger the generation of the Higgs potential. The only
source of breaking is �tL , which we embed into a spurion in the 14 by rewriting the
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interaction as

L=G�t
D q˛L.ƒL/

IJ
˛ .OL

F/IJ ; (3.94)

whereƒL is a symmetric traceless 2-tensor. The spurion VEV is (see Eq. (2.138))

.ƒL/
˛
IJ D

�tLp
2

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

2
666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 Ci
0 0 0 0 C1
0 0 Ci C1 0

3
777775

IJ

;

2
666664

0 0 0 0 Ci
0 0 0 0 �1
0 0 0 0 0

0 0 0 0 0

Ci �1 0 0 0

3
777775

IJ

9>>>>>=
>>>>>;

˛

: (3.95)

Notice that the tR coupling being invariant under the Goldstone symmetry nicely
fits with the alternative interpretation of the 14 ˚ 1 setup, outlined at the end of
Sect. 2.4.2, in terms of a completely composite tR field in the 12=3 of SO.4/�U.1/X .
This is possible only because tR mixes with a singlet. Indeed if the tR has to be part
of the composite sector, its interactions must respect the composite sector symmetry
group and thus they cannot generate the Higgs potential. In this interpretation, the
coupling strength is of order �tR � g�, while in the elementary case �tR < g�. In
the following section we will consider both cases by keeping the mixing as a free
parameter. We will see that the completely composite option is favored from the
viewpoint of the generation of a viable Higgs VEV and mass.

Notice that the completely composite tR interpretation only relies on OR
F being

a singlet, it does not require OL
F in the 14. The reason for making the latter choice,

rather than for instance OL
F 2 52=3, resides in the structure of the potential generated

by the spurion in the 14. This representation decomposes as

142=3 ! .3; 3/2=3 ˚ .2; 2/2=3 ˚ .1; 1/2=3 ; (3.96)

in terms of three rather than two irreducible SO.4/ multiplets. Three invariant
operators can thus be written, but only one of them is redundant given that only
one SO.5/ singlet is present in the tensor product of two 14’s. We now end up with
two independent operators, which we can take to be

O�2L; 1
D .ƒ4

L;D
�
/˛i .ƒ

4
L;D/

i
˛ D �2tL

�
2 � 7

2
sin2

H

f
C 2 sin4

H

f

	
;

O�2L; 2
D .ƒ1

L;D
�
/˛.ƒ1

L;D/˛ D 2 �2tL
�
4 sin2

H

f
� sin4

H

f

	
; (3.97)

where the dressed spurion multiplets are obtained, in full analogy with the previous
cases, by acting with U�1 on the two ƒ indices and splitting the indices of the
resulting matrix in SO.4/ components. The O.�2/ potential is thus a combination
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of sin2 and sin4 functions, of the form

V14˚1
�2

/ �2tL
�

c1 sin2
H

f
C c2 sin4

H

f

�
: (3.98)

Differently from the 5˚ 5 one, this potential can be tuned to achieve realistic EWSB
without relying on additional higher order terms.

3.3.2 Higgs Potential Estimated

A qualitative but sharp assumption was made in Sect. 3.1 on the nature of the
composite sector, which we characterized as a 1S1C (One Scale One Coupling)
model. By this assumption the power-counting formula in Eq. (3.23) was derived
to estimate the expected size of operators in the low-energy effective field theory
describing the pNGB Higgs plus the other SM particles. We got the same result for
large-N QCD-like strongly-coupled theories, showing that they might effectively
behave as 1S1C models. These results were valid exclusively for effective operators
generated by the composite sector dynamics alone, i.e. by the sole exchange of
composite sector virtual states with no elementary fields propagating in the internal
lines. Extending the analysis to the Higgs potential operators, which do not belong
to the latter category, is the purpose of the present section. We do this with a twofold
aim. First, we want to estimate the overall magnitude of the potential that controls
such an important observable like the Higgs mass. Second, we want to check if and
to what extent the intuitive idea that we can expand in the elementary couplings, and
thus in the number of spurion insertions, is actually valid or not. If it was not, the
predictive power of the spurion method would get completely washed out since we
would be forced to consider an infinite series of operators with arbitrary powers of
sin2 H=f , leading to a potential of completely generic form.

Deriving the power-counting estimate for the potential starts from outlining its
origin in terms of Feynman diagrams. The potential is, almost by definition, the
sum of 1PI (one particle irreducible) diagrams with zero-momentum external Higgs
lines. Since the Higgs is part of the composite sector, it does not couple directly
to the elementary sector fields. Therefore no diagram should be considered with
only elementary internal lines. Furthermore the Higgs is a NGB and thus it gets
no potential from the purely composite sector diagrams because they respect the
Goldstone symmetry. Mixed diagrams need to be considered, where at least one
elementary internal line is present. In order to make them 1PI the elementary line
must close into a loop, therefore the potential gets generated only at the radiative
level. The structure of the leading diagrams is reported in Fig. 3.4, where the
dashed lines ending on crosses denote Higgs field insertions, the black single lines
are elementary sector gauge or fermionic fields and gE collectively denotes the
elementary/composite couplings. Depending on which elementary sector state is
exchanged, gE D fg; g0; �tL ; �tRg. The double lines represent portions of the graph
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Fig. 3.4 The structure of the
leading diagrams contributing
to the potential

made of purely composite sector propagators and vertices. We denoted them as lines
because in weakly-coupled models (such as the ones we will deal with in Chap. 5)
they are indeed single particle propagators, making the ones in Fig. 3.4 one-loop
diagrams. However in a generic strongly-interacting composite sector we should
think to them as two-point correlators

of the composite sector operators to which the corresponding elementary line is
coupled. Namely, O is the global current J or one of the fermionic operators OL;R.

The contributions to the potential from the diagrams in Fig. 3.4, for each number
of gE insertions, is immediately worked out in the 1S1C hypothesis. The potential
is one term in the Lagrangian density, thus it has the dimension (see Eq. (3.8)) of
C�2 L�4, where C is the coupling dimension we defined as C D Œ„��1=2. The correct
coupling dimension is already saturated by the one-loop factor „=16�2 and thus the
dimension carried by elementary gE coupling insertions must be canceled by other
dimensionful objects. In the 1S1C hypothesis the only such object that is present in
the composite sector is g� and similarly m� is the only one that carries L dimension.
Thus the potential, setting „ D 1, is

V D Ncm4�
16�2

"�
gE

g�

�2
V.2/ŒH=f �C

�
gE

g�

�4
V.4/ŒH=f �C : : :

#
; (3.99)

where we took into account that the Higgs, being a Goldstone, must appear as H=f
as also apparent from the spurion analysis in the previous section. An overall factor
of Nc that counts QCD color multiplicity and equals 1 for the gauge and 3 for the
fermionic diagrams has been included in the estimate.

This was derived for perturbative 1S1C models, but the same result holds for
strongly-coupled large-N theories. Indeed we saw in Sect. 3.1 that the hOOi two-
point correlators, under the assumption of mesonic O, scale with N like

hOOi / N

16�2
� 1

g2�
: (3.100)

By taking this estimate for the double lines in Fig. 3.4, we end up once again with
the power-counting in Eq. (3.99).



3.3 The Composite Higgs Potential 119

Fig. 3.5 Subleading
contributions to the potential

Other diagram topologies, such as the ones in Fig. 3.5, also contribute to the
potential. They contain extra insertions of the elementary sector fields self-couplings
(namely, the gauge couplings) or composite sector correlators with more operator
insertions. In both cases this makes an additional loop suppression with respect to
the ones in Fig. 3.4

V2-loop � g2E
16�2

V1-loop : (3.101)

Provided the elementary sector couplings are perturbative, these contributions are
negligible and we are left with the estimate in Eq. (3.99).

The power-counting formula provides the desired justification of the spurion
expansion we performed in the previous section. Each spurion carries one gE and
each gE is weighted by 1=g�. This allows to set up a perturbative expansion if

gE < g� : (3.102)

The elementary sector couplings being weaker than the composite sector one is the
obvious criterion by which the elementary sector behaves as a weak perturbation
of the composite one and thus in particular the composite sector group is a good
approximate symmetry. This fact is explicitly verified here, showing that the spurion
classification is predictive if and only if gE < g�.

The IR Potential

There are contributions to the potential that do not need to be estimated but can just
be computed, up to a mild logarithmic sensitivity to the details of the composite
sector dynamics. The calculation is interesting under several respects, however
it lies somewhat outside the main line of development of these Notes since the
result will not introduce qualitatively new effects and thus it will be ignored in the
phenomenological analysis that follows.

The basic observation is that there exists a regime where we do have complete
control of the theory so that a real calculation is possible. This is the energy range
below the resonance scale m� where the effective field theory, describing the pNGB
Higgs and the other SM particles, is perturbative and accurately describes the
dynamics. Below (or much below) m� the dominant operators are the leading ones
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in the derivative expansion, namely the “non-linear �-model” terms we worked out
in Chap. 2. Within the non-linear �-model we can take one loop of the elementary
gauge and fermionic fields and compute the potential, ending up with the standard
Coleman–Weinberg formula

VgaugeŒH� D 3

32�2
ƒ2
X

i

M2
i C

3

64�2

X
i

ŒM4
i .log M2

i =ƒ
2 � 1=2/� ;

VtopŒH� D � Nc

8�2
ƒ2M2

t �
Nc

16�2
M4

t .log M2
t =ƒ

2 � 1=2/ ; (3.103)

where ƒ is the hard momentum cutoff of the loop integral.22 In the equation,
Mi denotes the field-dependent gauge field masses, namely those of the W and Z
bosons in the presence of a constant background for the H field. Analogously, Mt is
the H-dependent top mass. Clearly the bottom and the other quarks and leptons
contribute to the potential as well, however they can be safely ignored because
of their small masses. No contribution comes instead at one loop from diagrams
with propagating Higgs boson lines. Indeed the Higgs self-interactions respect the
Goldstone symmetry and thus they cannot generate the potential. Furthermore the
Higgs does not mix with the elementary fields so that mixed loops need not to be
considered.

The masses in Eq. (3.103) can be written in a form that, albeit somewhat involved,
allows to make contact with the spurion notation. We start from the top mass and
we consider the case of fermion embedding in the 5˚ 5 for illustration. The 14˚ 1
or other cases could be similarly worked out. The mass comes from Eq. (2.119)

� ct �tL�tR

g�
m�Q

t
L

1
T1

R ; (3.104)

expressed in terms of the dressed sources Qt
L

1 and T1
R in the singlet of SO.4/. By

writing this explicitly as in the second line of Eq. (2.119) one could immediately
obtain

M2
t D

1

8
ct2�2tL�

2
tR

f 2 sin2
2H

f
D y2t

4

f 2

1 �  sin2
2H

f
; (3.105)

where we expressed the prefactor in terms of the top Yukawa coupling and of  D
v2=f 2. However it is interesting to take an intermediate step, noticing that the dressed

22The calculation could equally well be performed in dimensional regularization, leading even-
tually to the same physical result. Working in a scheme where the quadratic divergence appears
explicitly is however more interesting for the present discussion.
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sources are related to the dressed spurions as

�tL Qt
L

1 D
�
ƒ1

L;D
��˛

qL;˛ ; �tR TR
1 D ƒ1

R;D
�

tR : (3.106)

This is evident from the definitions in Eq. (2.116) and (2.117), and similarly for TR.
The mass term in the spurion notation is thus

� ctf q˛L
�
ƒ1

L;D

�
˛
ƒ1

R;D
�
tR C h:c: ; (3.107)

and the squared top mass reads23
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�
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�
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ƒ1
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�
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D ct2f 2 O�2L�
2
R; 1
: (3.108)

After setting the spurions to their VEV, this correctly reproduces Eq. (3.105). The
rewriting of M2

t in terms of spurions shows that it is proportional to one of the O.�4/
operators listed in Eq. (3.91), as one could have also demonstrated by inspection,
comparing Eq. (3.105) with the list of operators expressed in the unitary gauge. This
shows explicitly that Mt is invariant under the spurionic symmetries. Similarly, by
using Eq. (2.36), we can express the W and Z boson masses in terms of the gauge
sector invariants in Eqs. (3.77) and (3.82):

M2
W D

1

6
f 2Og2C D

g2f 2

4
sin2

H

f
;

M2
Z D

1

6
f 2Og2C C 1

2
f 2Og0 2C D 1

c2w
M2

W : (3.109)

Now we have all the elements to discuss the structure of the potential in
Eq. (3.103). The first comment is that the potential is a function of the field-
dependent masses, which we saw above being invariant under the spurionic
symmetries. Therefore it is itself invariant, in accordance with the general argument
of Sect. 3.3.1. Second, some of the terms it contains are not new contributions
to the potential. In particular the quadratically divergent ones, proportional to the
squared masses, are linear combinations of the O.g2E/ operators we discussed in
Sect. 3.3.1. Notice that not only their functional dependence on the Higgs is the one
we expected, but also their size. Indeed when the momentum cutoff is identified with
the physical cutoff of the effective field theory, i.e. ƒ ' m�, their coefficient obeys
the power-counting in Eq. (3.99). Similar considerations hold for the finite terms.
They are O.g4E/ operators and their coefficients are the expected ones. The only

23Since no bR is present, the fermionic mass matrix is 2 � 1. The top mass is computed as M2
t D

MF

 � MF .
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terms in Eq. (3.103) that are new and interesting are the logarithmically divergent
ones. Furthermore these are the only terms we can actually compute since the others
are respectively unphysical divergences and scheme-dependent finite contributions.
The logarithms, instead, even after the divergence is canceled by renormalization,
result in scheme-independent terms

V IR
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3f 4
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3g4 C 2g2g02 C g04

16
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�
; (3.110)

where we used ƒ D m� D g�f as the divergence subtraction point and we reab-
sorbed O.1/ factor in the incalculable constant. We interpret this IR contribution
to the potential as the Renormalization Group running of the potential operators
from the resonance scale m� down to the energies that are relevant for EWSB. The
separation between these two scales makes it log enhanced.

All in all, the complete structure of the potential is as follows. The terms that
are polynomial in the spurions, with coefficient dictated by the power counting in
Eq. (3.99), are operators of UV origin. Namely they emerge from the composite
sector dynamics at the scale m� and they are computed at that scale by integrating
out the composite sector degrees of freedom. They come from Feynman diagrams
with finite external momenta and thus they can be Taylor expanded in the gE

couplings. Of course the true potential is computed at zero external momentum
and not at m�. But how the potential changes from m� to zero can be computed
within the realm of validity of the effective field theory, leading to the calculable IR
contribution we described above. This IR term is not polynomial in the couplings
and not even expandable in Taylor series around gE D 0. This is why it escaped
the spurion classification in spite of being perfectly invariant under the spurionic
symmetries.

3.3.3 Higgs VEV, Mass and Tuning

We are finally in the position to understand under what conditions and at what price,
in terms of fine-tuning, a realistic EWSB scale and Higgs mass can be obtained in
our framework. Apart from the IR term, which we ignore for simplicity, the potential
takes the generic form

VŒH� D �˛f 2 sin2
H

f
C ˇf 2 sin4

H

f
; (3.111)

where the signs and the f 2 normalization are chosen for future convenience. The
parameter ˛ receives contributions from both the gauge and the fermionic sectors
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at order g2 (3.78), g02 (3.83) and �2t (3.90), (3.98), while ˇ is of O.�2t / in the case
of the 14 ˚ 1 and of O.�4t / (3.92) for the 5 ˚ 5 choice. The gauge contribution
is typically subleading and it will be ignored in what follows. The functional form
of Eq. (3.111) is also obtained for fermions in the 10 ˚ 10 while for the spinorial
4˚ 4 sines of half the frequency (H=f ! H=2f ) should be considered. We will not
treat the latter case here because it is phenomenologically disfavored as we saw in
Sect. 3.2.2. It turns out that it behaves exactly like the 5 ˚ 5 as far as the issues of
VEV and mass generation are concerned.

Irregardless of their origin, the parameters ˛ and ˇ must be such to give realistic
EWSB, i.e. sin2hHi=f D  � 1 and mH D 126GeV. These requirements
correspond to the conditions

˛ D 2 ˇ  ; (3.112)

m2
H D 8 .1� / ˇ: (3.113)

Based on the above equations, two kinds of considerations can be made. On one
hand we can pragmatically observe that by inverting for ˛ and ˇ the potential is
completely specified up to the unknown parameter  D v2=f 2

VŒH� D m2
Hf 2

8  .1 � /
�

sin2
H

f
� 

	2
C const : (3.114)

This allows us to compute the Higgs boson self-interactions, starting from the
trilinear coupling. The latter is modified with respect to the SM by the relative
amount

k3 h D 1 � 2 p
1 �  : (3.115)

Unfortunately a precise enough measurement of this coupling is far to come,
therefore the prediction above is of limited phenomenological relevance for the time
being. On the other hand, more thoughtfully, we can ask ourselves how easy or
difficult it is in our framework to get ˛ and ˇ such as to obey Eqs. (3.112), (3.113)
leading to realistic EWSB and Higgs mass. The rest of the present section is devoted
to this issue.

The VEV condition (3.112) obliges us to take ˛=ˇ D 2  � 1, a situation which
is definitely unnatural in the 14 ˚ 1 case (and even more so for the 5 ˚ 5, as we
will see) where ˛ and ˇ emerge at the same order and thus are expected to be of
comparable size. The power counting in Eq. (3.99) tells us

˛14˚1 D a
Nc

16�2
�2tL m2� ; ˇ14˚1 D b

Nc

16�2
�2tL m2� ; (3.116)
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with a and b O.1/ coefficients. Furthermore the sin2 and sin4 contributions to the
potential normally arise together from the composite sector microscopic dynamics.
Namely, by integrating out the composite sector resonances we expect to obtain
operators like the ones in Eq. (3.97) that contain both functions. The parameters
˛ and ˇ are thus linear combinations of unrelated operator coefficients so that
suppressing one with respect to the other requires cancellation. This cancellation,
or fine-tuning, can be quantified as

�14˚1
 D .˛=ˇ/expected

.˛=ˇ/needed
D 1

2 
; (3.117)

in terms of the naturally expected size of the parameter over the value we actually
need. Such an amount of tuning, needed to achieve a small enough , is the one we
advocated since the very beginning of these Notes to be required for a potentially
realistic setup. Concrete constructions can have more tuning than� 1=, as we will
see below, but none happens to have less even though no robust argument actually
forbids this possibility. A priori one might imagine a model where ˛ emerges at
a subleading order in the spurions with respect to ˇ, making ˛ � ˇ and thus 
naturally small. No example of this “self-tuned” configuration exists, while we do
have examples of the opposite situation, ˛ � ˇ, and the 5˚5 model is one of those.
Indeed

˛5˚5 D a
Nc

16�2
�2t m2� ; ˇ5˚5 D b

Nc

16�2
�4t f 2 ; (3.118)

having denoted as �t, for shortness, any of the �tL;R . Actually for the sake of
the present discussion �t should be regarded as the largest of the two couplings.
Achieving small  is thus more difficult in the 5˚ 5, i.e.

�5˚5
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D
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�14˚1

 : (3.119)

This comes out, in a sense, from a “double tuning”: a first tuning needed to make ˛
comparable with ˇ overcoming the different orders at which they are generated,
times a second cancellation needed for ˛=ˇ �  � 1. The first step of the
cancellation if not needed for the 14˚ 1, which thus provides a “minimally tuned”
scenario.

From the viewpoint of achieving a small enough , i.e. of satisfying Eq. (3.112),
14 ˚ 1 is favored over 5 ˚ 5, let us now see what happens with the second
condition (3.113) needed to obtain a realistic Higgs mass. With the 14˚ 1 estimate
of ˇ we obtain

.m2
H/14˚1 D .1 � / b

Nc

2�2
.�tL g�/2 v2 ' b .100 GeV/2 .�tLg�/2 : (3.120)
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The result is of the right order of magnitude if �tL and g� are of order one, but
it rapidly becomes too large for larger values. However we saw in the previous
sections that large g� is phenomenologically welcome in order to push m� high
for moderate  D v2=f 2. For instance in Sect. 3.2.1 we concluded that m� at least
above 2:5TeV is required by EWPT, which means g� & 3 already for quite a small
 D 0:1. The g2� enhancement in Eq. (3.120) costs fine-tuning, to be performed by an
unnatural reduction of b. Obviously the tuning gets less and less severe the smaller
the �2tL prefactor is. The most favorable situation is thus case (II) in Eq. (3.60) where,
compatibly with the generation of the top Yukawa, �tL D yt and �tR D g�. This
corresponds to the completely composite tR limit, which, as anticipated, is the most
favorable one from the viewpoint of the Higgs mass generation. But even in this
favorable situation some extra tuning is needed

�14˚1
mh
D .b/expected

.b/needed
D
�
100 GeV

126 GeV

�2
y2t g2� ' 6

�g�
3

�2
: (3.121)

This second cancellation is completely unrelated to the one needed for the VEV
in Eq. (3.117). We leave to the reader the choice of how to combine the two
tunings to quantify the total degree of unnaturalness of the scenario. One might
consider multiplying them, which basically means measuring the area of the allowed
region in the a–b plane, or summing them in quadrature by a logarithmic derivative
definition of the tuning in the spirit of [32]. The second option is more close to
the interpretation of the tuning as degree of cancellation we emphasized in the
Introduction.

The situation is different in the 5˚5 case. A priori, it seems better since ˇ comes
at higher order and thus

.m2
H/5˚5 D .1 � / b

Nc

2�2
�4t v

2 ' b .100 GeV/2�4t ; (3.122)

which is insensitive to g�. However now the elementary coupling that controls mH

is not just �tL as it was for the 14˚1. Both chiralities contribute to the potential and
�t in the above equation represents the maximum between �tL and �tR . Decreasing
�tL while increasing �tR does not help now and the most favorable situation is case
(I) in Eq. (3.60), i.e. �tL ' �tR ' pytg�.24 In this configuration the tuning on b is

24One should also take into account that the VEV tuning in Eq. (3.119) gets worse for smaller �t

so that the truly optimal situation comes from the balance among the two sources of tuning and
depends on how these are combined in the total degree of unnaturalness. If we multiply them,
minimal �t (i.e. case (I)) is favored, if we sum them in quadrature a somewhat larger value could
be better.
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just identical to the one in the 14˚ 1 with completely composite tR
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: (3.123)

Given that a larger tuning for the VEV has to be paid in the 5˚ 5 case, the 14˚ 1
option emerges from this analysis as the more natural configuration. Further details
on this point will be given in Sect. 5.2.1, where explicit models will be analyzed.
It will turn out that the mechanism by which a correct mH is obtained in concrete
models is not a cancellation of the “b” coefficient, but rather a further reduction of
�t due to anomalously light particles. However the qualitative conclusions on the
tuning will be unaffected.

We now take one step back from explicit models and we outline the general
message that emerges from this discussion. We saw a preference for small g� in
order for a light enough Higgs boson being generated. This is in tension with
phenomenology which prefers a large g� in order to increase m� D g�f . This result
is robust and can be also established by the following argument. Rather than writing
mH in terms of ˇ as in Eq. (3.113), we can express it in terms of ˛ given that the
condition ˛=ˇ D 2 will anyhow have to be imposed at some point. Namely

m2
H D 4.1� / ˛ : (3.124)

In both models we considered, and actually in all known models based on the
minimal coset, ˛ is of O.�2/ and it is universally estimated to be

˛ D a
Nc

16�2
�2t m2� ; (3.125)

so that
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Nc

8�2
�2t m2� : (3.126)

Irregardless of how much tuning will be needed to adjust the VEV, an amount of
cancellation of at least

� � Nc
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�
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�2
; (3.127)

will come from the Higgs mass condition. If furthermore we notice that �t is in no
case below yt, according to the general rule that weak couplings can not produce a
strong one and to the discussion in Sect. 3.2.2, we conclude that � is at least

� � Nc

8�2
y2t

�
m�
mH

�2
D
� m�
450GeV
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We recognize here the general tuning formula we discussed back in the Introduction
in Eq. (1.7), with ƒSM identified with the resonance scale m�. The existence of a
tension among large m� and moderate tuning could thus have been guessed from
the very beginning of these Notes.

This tension is definitely an issue, however its importance should not be over-
rated. First of all it is based on an oder of magnitude estimate and on the intrinsically
semiquantitative concept of tuning. Second, the tension is not that sharp because the
tuning argument places limits on resonances of different nature than those that drive
the phenomenological constraints. Namely, the potential is dominantly generated
by the fermionic sector of the theory while the corrections to EWPT observable
(to OS in particular) emerge from the bosonic sector. Clearly in the strict 1S1C
hypothesis fermionic and bosonic resonances are characterized by the same typical
scale, however O.1/ departures are possible or even expected. We cannot exclude a
situation where the fermionic resonance scale m� that appears in the tuning formula
in Eq. (3.128) is below 1 or 1:5TeV, ensuring a moderate tuning, while the bosonic
m� that controls OS in Eq. (3.41) is above 2 or 2:5TeV. A completely analogous
situation is encountered in supersymmetric models, where a tuning formula similar
to Eq. (3.128) controls the mass of some specific supersymmetric particles, namely
stops and gluinos. This requires the latter states to be light, not the full superparticle
spectrum. In explicit composite Higgs models the particles controlling the tuning are
the “top partners”, whose nature and phenomenology will be carefully described in
Chaps. 5 and 6. The top partners, exactly like the corresponding supersymmetric
particles, happen to carry QCD color so that they can be copiously produced at
hadron colliders by QCD interactions. If they are light as dictated by the tuning
formula they should be discovered at the 14 TeV LHC. Otherwise excluding their
existence will push stronger and stronger bonds on the degree of unnaturalness of
the model, and ultimately on its plausibility.

Also in view of possible exclusions, it is interesting to ask ourselves if and at what
price, in terms of model-building complication, the tension could be structurally
avoided. Namely we would like to find a model with low tuning, below around 10%,
with colored resonances in the multi-TeV region, violating of Eq. (3.128). This can
be achieved if ˛ is structurally smaller than its estimate in Eq. (3.125), which for
instance might occur if it emerged at O.�4t /, with the O.�2t / contribution having
been canceled by some selection rule. If it was so we would estimate

m2
H ' a

Nc

8�2
�4t f 2 D a
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.50GeV/2 ; (3.129)

and the sensitivity of mH to m� would be avoided. Concrete composite Higgs
scenarios of this sort have recently been proposed [33–35], based on the so-called
“twin Higgs” mechanism [36]. In these constructions a light Higgs can be Naturally
obtained even for maximal g� D 4� , i.e. m� � 10TeV at  ' 0:1. The only tuning,
of order 1=, is the one associated with the VEV. Total tR compositeness is favored
also in those models. Twin composite Higgs models require non-minimal cosets
and extra model-building ingredients such as a doubling of the SM spectrum and
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an approximate twin parity symmetry. Describing these constructions would carry
us faraway from the pedagogical purpose of these Notes. They constitute an active
model-building direction on which progress might come from future investigations.

Appendix

Discrete Symmetries

Discrete symmetries are often useful in the study of composite Higgs theory. In
the case of the minimal coset SO.5/=SO.4/ the relevant ones are space–time parity
P, charge conjugation C (often combined with P to form CP) and a Z2 external
automorphism of the algebra called PLR.

Concerning parity, there is not much to say. It corresponds to ordinary spatial
coordinate reflection under which the Goldstone boson Higgs transforms like a
scalar and the gauge fields like vectors. Notice that the action of parity does not
flip L and R SO.4/ generators given that the L–R labeling does not refer here to
fermion chirality. The CCWZ d and e symbols are vectors under parity and thus the
O.p2/ bosonic Lagrangian (2.184) is accidentally P-invariant even if parity is not
imposed as a symmetry of the composite sector. Composite sector breaking of P can
emerge at O.p4/ through the operators discussed in Sect. 3.2.1. Parity is obviously
broken by the elementary fermion couplings to the SM gauge fields, and the same
holds for charge conjugation. Nevertheless, one might still want to impose them as
symmetries of the composite sector. Even if we will not consider this possibility
here, we mention that in this case the chiral fermionic operators OL;R

F that realize
partial compositeness (see Sect. 2.4.2) would be supplemented by their opposite
chirality P- and C-conjugate counterparts, with the same scaling dimensions.

Charge conjugation is less trivial. It acts as H ! H� on the complex Higgs field,
which in the real fourplet notation (2.28) means

#„
… ! C4

#„
…; where C4 D diag.�1;C1;�1;C1/ : (3.130)

Notice that C4 is a unit-determinant orthogonal matrix and as such it is a proper
element of the unbroken group SO.4/. Namely, it is

C D ei�ŒT2LCT2R� ; (3.131)

which, with the suitable generator matrices, can be expressed in any representation
of the complete group SO.5/ or of the unbroken subgroup SO.4/. Given that the
charge conjugation operation happens to act on the Goldstone fields like an element
of the unbroken symmetry group, we can simply use the results of Sect. 2.3 to derive
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its action on the Goldstone matrix, which is

UrŒ…� ! Cr UrŒ…� C�1
r ; (3.132)

for a generic representation r.
On the SM gauge fields, C acts as W˛ ! .�/1�ı˛;2W˛ and B� ! �B�. This can

be uplifted to the transformation rule

A�DA�; ATA ! C  A�  C�1 ; (3.133)

which we assign to the whole set of dynamical and non-dynamical sources that
gauge SO.5/. Therefore C coincides with C 2 SO.4/ even when acting on the A�
sources. This makes very easy to work out the transformation rules of the d and the
e symbols. They are just a fourplet and an adjoint of SO.4/ and thus

di
� ! .C4/

i
jd

j
� ; e˛L;R� ! .�/1�ı2˛e˛L;R� : (3.134)

Furthermore, the C operation is automatically a symmetry of our Lagrangian
and thus charge conjugation invariance is guaranteed for all the composite sector
operators involving d and e only. This includes the O.p2/ Lagrangian and the O.p4/
operators of Sect. 3.2.1. Notice that charge conjugation coincides with C only for
the Goldstones and for the A� sources, not for the U.1/X source X�. Given that we
embed the hypercharge gauge boson B� in it, it must transform with a minus sign

X� ! �X� : (3.135)

This sign flip needs not to be a symmetry of the theory, therefore C can be broken,
but only through terms with odd powers of the U.1/X source. Given that the latter
can only enter through its field-strength tensor @Œ�X	� because of local invariance,
C breaking is postponed to high orders in the derivative expansion and it does not
emerge at O.p4/ in the bosonic sector.

Let us now turn to the fermionic sector. Given that both P and C are broken by the
SM couplings it is not worth trying to define their actions on the fermionic source
fields. This makes sense instead for the product of the two symmetries, CP, which is
preserved by the SM matter quantum number assignment. We take, as is normally
done in the SM, the CP action to be �. #„x ; t/ ! �c. #„x ; t/ D �i�2�0��.� #„x ; t/,
where � denotes any of the elementary SM fields. Given the definition, the action
on the fermionic sources in the various representations introduced in Sect. 2.4.2
is immediately worked out. In all cases where the elementary SM fermions are
embedded in a real SO.5/ representation such as the 5, the 10 or the 14, it is easy to
verify that CP acts as the global C rotation in the appropriate representation times
the �! �c operation. For instance, in the case of the 5 we have

.F/I ! .C5/
J

I .F
c/I ; with C5 D diag.�1;C1;�1;C1;C1/ ; (3.136)
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where F denotes in general the top (QtL and TR) or bottom (QbL and BR) sector
fermionic sources. In order to construct the CCWZ invariants, as explained in
Sect. 2.4.2, it is useful to define dressed sources by acting with the inverse of
the Goldstone matrix. Given how the latter transforms, as in Eq. (3.132), their CP
transformation reads

Fr ! CrFc
r ; (3.137)

where r is the SO.4/ representation where the dressed source lives. We see that CP
acts as the SO.4/ transformation C, under which all the operators are automatically
invariant, times the “intrinsic” CP operation � ! �c. Since the same holds for
the bosonic fields, with the only exception of X�, this makes very easy to establish
the CP quantum numbers of the operators. For instance all the O.p0/ operators in
Sect. 2.4.2 are CP-even, once their coefficients are set to a real value to obtain a real
mass, while some of those of O.p/ in Sect. 3.2.2 break CP.

This was for real representations. When the elementary SM fermions are in the
complex spinorial 4, instead, no imaginary phase is introduced in the embeddings,
see Eq. (2.133) and therefore CP is just

.F/i ! .Fc/i ; (3.138)

when acting on the sources. We actually need the transformation property of the
dressed sources, obtained by acting with the inverse Goldstone matrix and splitting
the fourplet into two doublets, namely

�
F2L

F2R

	
D U�1

4 F : (3.139)

The Goldstone matrix transformation is immediately obtained from Eq. (3.131)

U4 ! OC4  U4  OC�1
4 ; where OC4 D

�
i�2 0

0 i�2

	
: (3.140)

This can be rewritten, using the symplectic condition in Eq. (2.171), in a seemingly
more complicated way

U4 ! OC4 ��1  U�
4 �  OC�1

4 ; with �  OC�1
4 D

�
�2 0

0 ��2
	
; (3.141)

in terms of the complex conjugate of the Goldstone matrix. This becomes useful
if we take into account that the physical fields are always embedded in the source
F in either the first two components of the fourplet or in one of the two last (we
denote by F˙ the two cases) but never in both at the same time. Therefore the matrix
�  OC4 reduces to either an overall plus or minus sign when acting on them, leading
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eventually to the following result

�
F2L

F2R

	
!

�˙.F2L˙ /c
�.F2R˙ /c

	
: (3.142)

Notice that the “c” operation acts now on the dressed sources and thus it entails
taking the complex conjugate of U4, which is where Eq. (3.141) comes into play.

We now discuss PLR. As the name suggests, it is a Z2 transformation that
interchanges L and R generators of the SO.4/ group in SO.5/. It corresponds to
parity in the SO.5/ space and it is represented, in the fundamental, by the matrix

P5
LR D diag.�1;�1;�1;C1;C1/ : (3.143)

It acts on the generators as

P5
LRT˛L P5

LR D T˛R ; P5
LRT˛R P5

LR D T˛L ;

P5
LR
OTiP5

LR D
�
P4

LR

�i

j
OTj ; (3.144)

where P4
LR is

P4
LR D diag.�1;�1;�1;C1/ : (3.145)

The PLR operation belongs to O.4/ � O.5/, therefore it is not an element of the
symmetry group and thus it is not automatically a symmetry of the composite sector.
It could be imposed or more interestingly, as in the case encountered in Sect. 3.2.2,
emerge as an accidental symmetry. Notice that the fourth real Higgs component,…4,
is PLR-even. Therefore PLR, provided it was a symmetry of some sector of the theory,
will not be broken spontaneously by the Higgs VEV. On the Goldstone fourplet and
on the Goldstone matrix in the fundamental, PLR acts, respectively, as

#„
…! P4

LR
#„
…; UŒ…�! P5

LRUŒ…�  P5
LR ; (3.146)

out of which the d and e symbols transformation rules (including the terms with the
gauge sources, whose transformation rule is defined below) are found to be

d�; i !
�
P4

LR

� j

i
d�; j ; eL

�; ˛ $ eR
�; ˛ : (3.147)

By following this logic, PLR can be defined also on the elementary gauge
and fermionic source fields. Of course PLR, differently from CP discussed above,
is not a symmetry of the elementary sectors, therefore the SM field embedding
into the sources will normally break it completely. Nevertheless we can assign
transformation properties, for instance

A� ! PLR  A�  P�1
LR ; FI ! .P5

LR/
J

I FJ ; (3.148)
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to gauge and to fermions in the fundamental, respectively. The dressed fermion
sources transformation rules, given how the Goldstone matrix transforms, are at
this point completely obvious.

The action of PLR on all the representations obtainable as tensor products of
SO.5/ fiveplets are immediately inferred from Eq. (3.143): it will be sufficient to
act with the P5

LR parity on each index. Some work is instead needed to obtain the
representation on the spinorial, which turns out to be

OP4
LR D

�
0 �

� 0

	
; (3.149)

not to be confused with P4
LR acting on the SO.4/ fourplets. It is easy to verify,

given the generators of the spinorial reported in Eq. (2.170), that OP4
LR correctly acts

on them like for the ones in the fundamental representation in Eq. (3.144). Not
surprisingly, being a L–R interchange, PLR flips the .2; 1/ and .1; 2/ components
of the fourplet. On the Goldstone matrix we obviously have

U4Œ…�! P4
LR  U4Œ…�  P4

LR ; (3.150)

and thus the dressed sources in Eq. (3.139) simply get interchanged

F2L $ F2R : (3.151)
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Chapter 4
Flavor

As we saw in Chap. 2, a fundamental ingredient of the composite Higgs scenarios
is the partial compositeness hypothesis, which provides a general framework to
describe the Standard Model (SM) fermions and to generate their masses and
couplings. In most of the previous discussions we focused our attention on the third-
generations quarks, and in particular on the top. In fact, due to its large mass, the
top is usually the elementary state with the largest mixing with the composite sector
and is the one that almost completely determines the dynamics of Electro-Weak
Symmetry Breaking (EWSB).

Constructing a complete model, however, also requires a description of the
light fermions and the implementation of the three-families structure of the SM.
This is a non trivial task due to the highly non-generic features of the SM flavor
structure. The first peculiar aspect is the presence of a hierarchy of masses among
the different quark and lepton generations. A second important feature is the
suppression of flavor-violating effects due to a set of accidental flavor symmetries.
In particular, flavor-changing transitions mediated by the Z-boson and by the Higgs
are extremely suppressed. The only sizable flavor-violating effects are due to the
W-boson couplings and are controlled by two mixing matrices, VCKM in the quark
sector and VPMNS in the lepton sector. It is also remarkable the fact that flavor
violation in the quark and lepton sectors seems to follow two very different patterns.
In the quark sector the VCKM matrix is close to the identity with a strong hierarchical
structure that suppresses off-diagonal couplings. On the contrary, in the lepton sector
a completely anarchic VPMNS matrix seems preferred by the experimental data. The
expected order-one flavor-violation effects, however, are present only in the neutrino
sector, whereas they are strongly suppressed for charged leptons due to the smallness
of the neutrino masses.

Another important feature of the SM flavor structure is related to CP violation.
The flavor symmetries of the three-generation structure, broken only by the Yukawa
couplings, allow to remove from each mixing matrix all complex phases except one.
Moreover, if only two (or one) quark generations are considered all the complex
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phases can be removed, thus completely forbidding CP violation. An important
consequence of this structure is the strong suppression of Electric Dipole Moments
(EDM’s), in accordance with the strong experimental bounds.

As it can be easily understood, reproducing the SM flavor structure in a
Beyond the SM (BSM) scenario can be quite challenging. In fact the presence
of additional dynamics usually breaks the accidental flavor symmetries of the
SM and leads to large flavor-violating effects. In the composite Higgs scenarios,
in particular, dangerous effects can come from the non-linear Higgs dynamics
and from the presence of extra particles. For instance, spin-1 composite-sector
(vector) resonances can mediate Flavor Changing Neutral Currents (FCNC’s), while
fermionic resonances (or fermionic partners) can introduce new large CP violating
phases or modify the Z and W couplings. In this chapter we will see how, by a
judicious extension of the partial compositeness framework, these problems can be
kept under control and the composite Higgs scenario can be endowed with a realistic
flavor structure.

Several alternative flavor constructions can be conceived. The “classical” imple-
mentation is the so-called “anarchic” scenario [1–6], which is probably the one that
most directly follows and most fully exploits the partial compositeness hypothesis.
As we will see in Sect. 4.1, this scenario gives a dynamical origin to the hierarchies
of the fermion masses. Remarkably, the same mechanism automatically generates a
hierarchical structure for the VCKM matrix and a suppression of the flavor-violating
effects involving the light SM fermions. In spite of the successes of the anarchic
scenario, some residual tension with the experimental data remains. This led to the
exploration of alternative constructions. These constructions usually do not offer
an explanation for the mass hierarchies, but can more efficiently suppress flavor-
violating effects thanks to the introduction of suitable flavor symmetries. We will
discuss this class of models in Sect. 4.3.

4.1 Anarchic Partial Compositeness

We start our discussion of the flavor structure by considering the anarchic scenario.
In this and in the following two sections we will focus exclusively on the quark
sector, which is the one that so far has been most thoroughly scrutinized in the
literature. A discussion of the flavor structure of the lepton sector, for which instead
only a limited literature is available, is postponed to Sect. 4.4.

As we saw in Chap. 2, the partial compositeness framework is based on the
assumption that the matter fermions, realized as elementary fields, are linearly
mixed with some composite operators (see Eq. (2.98)). The elementary/composite
mixing is external with respect to the composite sector dynamics and is generated at
a very high energy scaleƒUV. By a simple generalization of Eq. (2.98), we can write
the structure of the mixing in the presence of multiple generations of elementary
fermions. In the case of the up-type elementary singlets ui

R, for instance, we can
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write

LintŒƒUV� D
�ij

uR

ƒ
d

j
uR �5=2

UV

ui
RO

uR j
F C h:c: ; (4.1)

where i; j D 1; 2; 3 are family indices. In writing Eq. (4.1), we considered arbitrary
scaling dimensions d j

uR
for the composite fermionic operators OuR j

F . The �ij
uR

matrix
controls the strength of the couplings at the scale ƒUV and has, in general, an
anarchic structure, i.e. all its elements (including the off-diagonal ones) are of the
same order. This kind of structure is expected if all the couplings are generated
by a generic UV theory that does not possess any flavor symmetry. The fermionic
operators OuR 1;2;3

F are defined in the UV, where the global symmetry group of the
composite sector is linearly realized. Therefore, as explained in Sect. 2.4.2, each
of them must be part of some complete representation of the group. The same
representation is assumed for all the three operators.

The elementary quarks interactions at low energy are related to the ones in
Eq. (4.1) by the Renormalization Group evolution (see Eq. (2.99)):

�ij
uR
Œm�� ' �ij

uR

�
m�
ƒUV

�d
j
uR �5=2

� Q� cij
uR
� j ; (4.2)

where we split the coupling matrix �ij
uR

into an overall normalization Q� and an
anarchic matrix with order one entries, cij

uR
. The components of the vector

� j D .m�=ƒUV/
d

j
uR �5=2 ; (4.3)

are instead Naturally hierarchical, given that m� � ƒUV, if the composite operators
have different scaling dimensions. We order them such that � i � � j, i.e. di

uR
> d j

uR
,

for i < j. The elementary/composite mixing Lagrangian in the IR, namely at the
scale m� � TeV, can be rewritten as

LintŒm�� D Q� cij
uR
� j ui

RO
uR j
F C h:c: ; (4.4)

where we absorbed into the composite operator normalization the powers of m�
needed to match the energy dimension. At low energy the composite operators OuR j

F
are not distinguished by any quantum number, we can thus redefine them in order
to put the elementary/composite mixing in a convenient form. In particular, we can
perform a rotation of the operators, accompanied by a rotation of the elementary ui

R
in the flavor space, and put the mixing in a diagonal form.1

To understand the structure of the result of this diagonalization we first need to
state a little theorem on the singular value decomposition of a matrix. We consider

1In the UV, where the composite sector is close to the fixed point, the operators are characterized by
their different scaling dimensions d j

uR
, which can be regarded as their eigenvalue under dilatation.

The presence of this additional quantum number makes them distinguishable and does not allow
to rotate them.
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a matrix of the form

Mij D � i
Lcij�

j
R ; (4.5)

where cij is an anarchic matrix with O.1/ entries and �L;R are vectors with generic
entries, which we order so that

� i
L � � j

L ; � i
R � � j

R ; for i < j : (4.6)

The theorem will provide interesting information only when one or both the �L;R

vectors have strongly hierarchical components, i.e. when a strong ordering � i
L;R �

�
j
L;R for i < j is present. The theorem states that the singular value decomposition

of M

Mij D Uik
L mkl.U


R/
lj ; (4.7)

involves a real diagonal matrix m with entries of order

mii � � i
L�

i
R ; (4.8)

and that the elements of the UL unitary transformation are

Uij
L �

8̂
<
:̂
� i

L=�
j
L for i < j ;

1 for i D j ;

�
j
L=�

i
L for i > j ;

(4.9)

and analogously for UR. Clearly, the result is non-trivial only for hierarchical �L or
�R. In this case the singular values of the Mij matrix are hierarchical,

mii � m jj for i < j ; (4.10)

and the unitary transformations corresponding to the hierarchical �L;R vectors are
close to the identity.

We now apply the theorem to the diagonalization of Eq. (4.4), where � i
L is of

order one and �R D � is strongly ordered. After an anarchic UR rotation on the
elementary fields and a hierarchical UL rotation on the composite operators, the
elementary/composite Lagrangian takes the diagonal form

Lint D Q�i ui
RO

uR i
F C h:c: ; (4.11)

with real hierarchical mixing coefficients of order

Q�i � Q� � i : (4.12)
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A similar analysis can be performed for the other SM quark multiplets qi
L D

fui
L; d

i
Lg and di

R. Provided each of them mixes in the UV with only one set
of composite operators as we assumed to be the case for ui

R in Eq. (4.1), the
elementary/composite Lagrangian can be put in a fully diagonal form

Lint D �i
qL

qi
LO

qL i
F C �i

uR
ui

RO
uR i
F C �i

dR
d

i
RO

dR i
F C h:c: (4.13)

When instead one elementary field mixes with more sets of composite operators
with different quantum numbers, the situation changes. More terms will be present
in the interaction Lagrangian and they will not, in general, assume a diagonal form.
Indeed, the diagonalization procedure outlined above requires one rotation being
performed on the elementary fields, therefore only the mixings with one set of
composite operators can be diagonalized. The scenarios where only one set of
composite operators mixes with each SM quark representation, and Eq. (4.13) holds,
are denoted as “single mixing” scenarios. In some cases, as we will see below, the
presence of multiple mixings is however unavoidable to obtain a realistic model.

Several options exist for the choice of the SO.5/ � U.1/X global group rep-
resentation the composite operators belong to, some of which are described in
Sect. 2.4.2. Valid representations must fulfill two basic requirements. First of all,
they must contain the appropriate SM multiplets in their decomposition. Second, the
representation of the operators associated to the left and the right chiralities must be
“compatible” with each other, in the sense that they must allow for the generation of
the Yukawa couplings from the composite dynamics. The up-type Yukawa’s come
in the low-energy theory from composite sector two point functions hOqL i

F OuR j
F i,

and similarly for the down-type ones. These correlators can be non-vanishing only
if they respect the unbroken group, i.e. if the left and right composite operators
contain the same representation of SO.4/ �U.1/X .2

The simplest example is the 41=6 spinorial representation we discussed in
Sect. 2.4.2. It decomposes under SO.4/ � U.1/X ' SU.2/L � SU.2/R � U.1/X and
eventually under the SM gauge group as

41=6 ! .2; 1/1=6 ˚ .1; 2/1=6 ! 21=6 ˚ 12=3 ˚ 1�1=3 : (4.14)

Given that it contains the SM representations of one complete quark family, the
41=6 could be taken as the representation of all the composite operators OqL

F , OuR
F

and OdR
F . This does not mean that the three sets of operators are identified as

the components of one single multiplet. Three different multiplets, all in the 41=6
representation of SO.5/ � U.1/X but characterized by different scaling dimensions
dqL , duR and ddR , are introduced. Otherwise, all the elementary/composite mixings
would have the same hierarchies and we would not be able to reproduce the quark

2The SU.3/c color group is automatically respected, since all the operators are color triplets in
order to mix with the elementary quarks.



140 4 Flavor

masses and the VCKM matrix. The 41=6, where three sets of operators are introduced
as described above, is the simplest example of a “single mixing” scenario. Identical
considerations hold for fermionic operators in the 102=3 representation, which also
contains one full SM quark family in its decomposition

102=3 ! .2; 2/2=3 ˚ .3; 1/2=3 ˚ .1; 3/2=3
! 27=6 ˚ 21=6 ˚ 32=3 ˚ 15=3 ˚ 12=3 ˚ 1�1=3 : (4.15)

The situation is different if we embed the operators in the fundamental SO.5/
representation. In order to find a component with the quantum numbers of the uR

singlets we need to consider the 52=3 multiplet:

52=3 ! .2; 2/2=3 ˚ .1; 1/2=3 ! 27=6 ˚ 21=6 ˚ 12=3 : (4.16)

This representation contains a doublet with the quantum numbers of the qL

elementary fields, thus it can also be used to embed the OqL
F operators on top of

OuR
F . Having one 52=3 multiplet mixing with the uR and another one mixing with

the qL is already sufficient to generate the up-type Yukawa couplings that emerge,
as previously explained, from the correlators of the left and the right composite
operators. The 52=3 representation, however, does not contain any state with the
quantum numbers of the down-type singlets. The operator OdR

F , mixing with the dR,
must then be taken to be in a different representation. One possibility is to consider
the 5�1=3, which decomposes as

5�1=3 ! .2; 2/�1=3 ˚ .1; 1/�1=3! 21=6 ˚ 2�5=6 ˚ 1�1=3 : (4.17)

Introducing only this mixing is however not sufficient to generate the down-type
Yukawa because OdR

F 2 5�1=3 is “incompatible” with the left chirality operator
OqL

F 2 52=3. Namely, they can not have a non-vanishing two-point function because
they have different charges under the unbroken U.1/X group. A second mixing, with
a second set of operators O0qL

F , must then be introduced for the qL elementary fields.
Given that the 5�1=3 contains the qL doublet in its decomposition, the simplest choice
that allows for the generation of down-type Yukawa’s is to take O0qL

F in the 5�1=3
like OdR

F . This scenario, where an additional set of operators needs to be introduced,
does not respect the “single mixing” hypothesis and the mixing Lagrangian contains
now an additional term

Lint D �i
qL

qi
LO

qL i
F C �i

uR
ui

RO
uR i
F C �0i

qL
qi

LO0qL i
F C �i

dR
d

i
RO

dR i
F C h:c: : (4.18)

In the above equation, a diagonal form has been given to the extra mixing �0.
However, as explained above, this is not the most general situation given that the
extra mixing can not be always diagonalized. A diagonal form for the extra mixing
is however phenomenologically required to avoid large flavor violating effects,
therefore it will be assumed to be so in what follows. Speculations on how some
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symmetry of the UV theory might force the two qL mixings to be aligned and thus
simultaneously diagonalizable are discussed in [7].

The last example we mention is the scenario with operators embedded in the
symmetric 14 representation. The 142=3 multiplet, whose decomposition reads

142=3 ! .2; 2/2=3 ˚ .3; 3/2=3 ˚ .1; 1/2=3
! 27=6 ˚ 21=6 ˚ 35=3 ˚ 32=3 ˚ 3�1=3 ˚ 12=3 ; (4.19)

can serve as the representation of OqL
F and of OuR

F . Analogously to the case of the
fiveplet, a different multiplet (as, for instance, the 14�1=3) is needed for OdR

F and
O0qL

F in order to generate the down-type Yukawa’s. The “single mixing” hypothesis
is violated also in this case.

4.1.1 Quark Masses and Mixings

We can now discuss the generation of the quark masses and of the VCKM matrix.
We saw in the previous chapters how to estimate the low-energy effective operators
involving elementary fields that are linearly coupled to the composite sector. By
applying those results we find that the Yukawa couplings3 of the quarks have the
structure4

yij
u D

�i
qL
�j

uR

g�
cij ; yij

d D
�0i

qL
�

j
dR

g�
c0

ij ; (4.20)

where g� is the typical coupling strength of the composite sector. The above
formulae are valid in the scenarios in which the qL doublet is mixed with two sets
of composite operators (as for instance in the models based on the fundamental
SO.5/ representation). In the “single mixing” scenarios we have the identification
�0

qL
D �qL . The cij and c0

ij parameters in Eq. (4.20) are matrices in flavor space
and their structure might depend on the details of the composite sector. In the
anarchic partial compositeness scenario the composite sector is assumed to have no
flavor structure and to generate all possible flavor-violating couplings with similar
strengths. This translates in the assumption that the c and c0 matrices are anarchic

3For shortness we will not make an explicit distinction between the couplings to the Higgs field
responsible to generate the mass matrices and the linear couplings of the Higgs fluctuations to the
quarks. Obviously, due to the non-linear Higgs dynamics, the two things are in general different
and only coincide at leading order in the v=f expansion. In the following we will denote both
couplings by “Yukawa’s” and leave the exact interpretation of the concept to the context.
4Below we report the structure of the Yukawa matrices at leading-order in the �=g

�
expansion.

Subleading effects from of order �2 modifications of the kinetic terms induced by the composite
sector will be discussed in Sect. 4.1.2.
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with all the elements of the same order

cij � c0
ij � 1 : (4.21)

Obviously some hierarchy is needed to generate the observed quark masses
and mixings. In the anarchic scenario these come from the structure of the
elementary/composite couplings. As we anticipated in the previous discussion, we
assume that the elementary/composite mixings are hierarchical

�1qL
� �2qL

� �3qL
; �1uR

� �2uR
� �3uR

; (4.22)

and analogously for the down sector couplings �0
qL

and �dR .
The Yukawa matrices have the form of Eq. (4.5), with hierarchical �L and �R.

We can thus apply the theorem stated in Eqs. (4.8) and (4.9) to their diagonalization
formulae

yu D ULyD
u U


R ; yd D DLyD
d D


R : (4.23)

We find that the diagonalized Yukawa’s, yD
u;d, are hierarchical and are of order

yD ii
u � �i

qL
�i

uR
=g� ; yD ii

d � �0i
qL
�i

dR
=g� ; (4.24)

and that the four chiral rotation matrices are close to the identity. Their entries can
be estimated as

.UL/ij �

8̂
<
:̂
�i

qL
=�j

qL
for i < j

1 for i D j

�j
qL
=�i

qL
for i > j

; (4.25)

and similarly for the UR and DL;R rotations. The VCKM matrix, which is the product
of the rotations of the left-handed fields

VCKM D U

LDL ; (4.26)

is therefore also close to the identity. Its off-diagonal elements can be estimated as

Vij
CKM � Vji

CKM � �i
qL
=�j

qL
˙ �0i

qL
=�0j

qL
for i < j ; (4.27)

where we inserted a ˙ sign to denote that the up and down contributions are
determined up to order one coefficients which can also have arbitrary sign.

The elementary/composite mixings, and the hierarchies among them, are free
parameters of the theory. We will now see how these hierarchies can be chosen
in such a way that the size of the quark masses and of the VCKM elements are
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reproduced in a “natural” way, that is with order one cij and c0
ij parameters and

no special relations among them. The quark masses give the first set of conditions

mu

mc
� �1qL

�2qL

�1uR

�2uR

;
mc

mt
� �2qL

�3qL

�2uR

�3uR

;

md

ms
� �01

qL

�02
qL

�1dR

�2dR

;
ms

mb
� �02

qL

�03
qL

�2dR

�3dR

:

(4.28)

The second set of conditions comes from the non-diagonal elements of the VCKM

matrix we estimated in Eq. (4.27). By the latter formula we would like to reproduce
the observed size of the VCKM elements, which is well described by the structure

VCKM �

2
64
1 � �2C=2 �C �3C

�C 1 � �2C=2 �2C

�3C �2C 1

3
75 ; (4.29)

where �C is of the order of the sine of the Cabibbo angle, �C � sin �C ' 0:22. It can
be shown [8] that simultaneously reproducing mass and VCKM hierarchies requires
that the second term in Eq. (4.27) is either dominant or comparable with the first
one. Namely, �i

qL
=�j

qL
. �0i

qL
=�0j

qL
. This means that the hierarchical structure is more

pronounced in the up sector than in the down one and that the VCKM elements are
thus mainly determined by the down-sector rotations. Therefore reproducing the
structure of the VCKM fixes the hierarchy among the �0

qL
parameters [4] to be

�01
qL
=�02

qL
� �C ; �02

qL
=�03

qL
� �2C : (4.30)

In the “single mixing” models, where �0 D �, this conditions obviously fix all the
mixings of the left-handed qi

L doublets. Instead, if multiple mixings are present,
the hierarchies among the up mixings �i

qL
are to a large extent arbitrary and only

restricted by mild constraints. Once the left mixings are chosen, the sizes of the
right-handed mixings are then determined by the requirement of reproducing the
hierarchies of the quark masses (see Eq. (4.28)) and the value of the top and bottom
Yukawa’s (see Eq. (4.24)).

The eight conditions listed above allow to fix the size of almost all the �
couplings. Only four quantities remain undetermined and can be conveniently
identified with

xt �
�3qL

�3uR

; and zi �
�i

qL

�0i
qL

; i=1, 2, 3 : (4.31)

The xt parameter is related to the ratio between the amount of compositeness in the
left- and right-handed top components and it is restricted to vary in a limited range
around one. This can be seen by considering the estimate of the top Yukawa, which
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can be rewritten as

yt ' g�
�3qL

g�
�3uR

g�
: (4.32)

As we saw in the previous chapters, and in particular in Sect. 3.2.2, the elemen-
tary/composite mixings can not overcome g�. This gives two conditions, �3qL

� g�
and �3uR

� g�, which make xt live in the range

yt=g� . xt . g�=yt : (4.33)

The zi parameters correspond to the ratio between mixings of the left-handed up and
down fields and parametrize the arbitrariness in the choice of the �i

qL
parameters in

the models with multiple mixings. The values of the zi parameters are subject to
some mild restrictions. Due to the large mass difference, it is natural to assume
that the bottom compositeness is smaller or at most equal to the top one. The
condition z3 & 1 is thus usually verified in the explicit models. As we discussed
before, in order to obtain the quark masses and the hierarchies in the VCKM matrix,
the condition �i

qL
=�j

qL
. �0i

qL
=�0j

qL
is required. This condition translates into the

relations z1 . z2 . z3. A choice often encountered in the literature is to assume that
the hierarchy in the up and down mixings are equal so that

�1qL
=�2qL

D �01
qL
=�02

qL
� �C ; �1qL

=�2qL
D �01

qL
=�02

qL
� �2C : (4.34)

In this case the zi parameters are all equal, z1 D z2 D z3 � z. This pattern obviously
describes also the models with “single mixing”, which are recovered for z D 1.
For simplicity, in our derivation of the flavor constraints in Sect. 4.2 we will assume
that the condition z1 D z2 D z3 � z is realized. Relaxing this assumption does not
significantly modify the results, hence our estimates remain approximately valid for
a generic pattern of up-type mixings.

4.1.2 Higgs Couplings and Higher-Order Effects

In the first part of this section we discussed the framework of anarchic partial
compositeness scenarios and how the quark masses and the structure of the VCKM

matrix are naturally generated through the hierarchies in the elementary/composite
mixings. We now want to extend the previous discussion and analyze the structure of
the Higgs couplings and their role in mediating flavor-violating effects. As we saw in
Chap. 2, the Higgs interactions induced by the leading O.p0/ operators are fixed by
the Goldstone symmetry and are fully determined by the SO.5/ quantum numbers
of the composite operators mixed to the elementary quarks. For definiteness, in the
following we will consider the scenario with composite operators transforming in
the fundamental representation of SO.5/ and we will only briefly discuss possible
differences that arise in other set-ups.
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The effective Lagrangian describing the Yukawa interactions of the up-type
quarks can be obtained by a simple generalization of Eq. (2.119). By taking into
account the result in Eq. (4.20) we get

Lu
Yuk D �yij

u

f

2
p
2jHj sin

2
p
2jHj
f

qi
LHcuj

R C h.c. (4.35)

Analogously, from Eq. (2.129) we get the down-type Yukawa operators

Ld
Yuk D �yij

d

f

2
p
2jHj sin

2
p
2jHj
f

qi
LHd j

R C h.c. (4.36)

By going to the unitary gauge (see Eq. (2.34)),

Lu
Yuk D �

f

2
p
2

sin
2.V C h/

f
yij

uui
Luj

R C h.c. ; (4.37)

Ld
Yuk D �

f

2
p
2

sin
2.V C h/

f
yij

dd
i
Ldj

R C h.c. ; (4.38)

we discover the remarkable feature that the dependence on the Higgs field is
completely factorized and is disconnected from the flavor structure. As a conse-
quence, in the mass eigenstate basis the leading Higgs interactions are automatically
diagonalized and FCNC’s mediated by the Higgs are not present [9].

The absence of Higgs-mediated FCNC can also be understood as follows. In the
low-energy Lagrangian in Eqs. (4.35) and (4.36) there are only two sources of flavor
violation, namely the yij

u and the yij
d matrices, which have the same flavor quantum

numbers as the SM Yukawa matrices. This means that an accidental Minimal Flavor
Violation (MFV) [10] is present, which suppresses FCNC’s mediated by the Higgs.
Notice that for this result to be valid it is essential that only two invariant operators
are present in the effective theory at O.p0/. Whether this structure is realized or
not depends on the SO.5/ quantum numbers of the composite operators mixed with
the elementary fields or, equivalently, on the representations we use to embed the
elementary quarks (see Sect. 2.4.2). For instance, a similar structure with only two
invariants is realized in the models based on the spinorial SO.5/ representation.
On the other hand, if more than two invariants are present, the MFV structure is
violated and the extra invariants would in general give rise to flavor changing effects
mediated by the Higgs. An example of scenarios of this type are the models based
on the representation 10, which gives rise to two independent operators in the up
sector and two in the down sector.5

So far, in the analysis of the quark mass generation and of the Higgs couplings,
we restricted our attention to the leading effects coming from O.p0/ effective

5This is true in the absence of additional symmetries in the composite sector. For instance by
imposing a PLR symmetry the number of invariants can be reduced to two and Higgs-mediated
FCNC’s can be avoided.



146 4 Flavor

operators. As we discussed in Chap. 3, however, higher-order effects that modify
the features of the low-energy dynamics are usually present. These can lead to
quantitative modifications of the estimates (in particular for effects related to fields
with a large amount of compositeness), but can also produce important qualitative
changes, if a symmetry or selection rule is there at leading order as in the present
situation.

The first corrections to the leading-order fermion dynamics come from operators
of order p. Restricting our attention to the uR singlets two independent PLR-invariant
operators are found (see Sect. 3.2.2), which can be expressed in the following form

Ou D 1

g2�
�u

ij�
i
uR
�j

uR
U

4 i
R i��d�U1 j

R C h:c: ;

O0
u D

1

g2�
�0u

ij �
i
uR
�j

uR
U

4 i
R i��D�U4 j

R C h:c: ; (4.39)

where �ij are generic complex matrices in flavor-space with order-one elements.
In the above formulae D� is the CCWZ covariant derivative and d� is the CCWZ
d-symbol. Finally U4;1

R denote the elementary fields “dressed” with the Goldstone
matrix (see Sect. 2.4.2) in, respectively, the 4 and the 1 SO.4/ representations. The
two operators in Eq. (4.39) have a non-trivial dependence on the Higgs field and
induce corrections to the Higgs couplings and, after EWSB, to the gauge bosons
couplings.

The O.p/ operators induce additional flavor-breaking interactions that break the
MFV structure in the Higgs couplings. We can easily understand this feature through
a simple example. The operator Ou gives rise to derivative interactions of the Higgs:

Ou � 2
p
2i
v

f 2
Q�u

ij .@�h/ ui
R�

�uj
R C h:c: ; (4.40)

where we absorbed the �u factors and the 1=g2� normalization into the Q�u matrix and
we only considered the first term in the  expansion (thus using the identification
V ' v). Notice that the Q�u matrix can be assumed to be Hermitian, given that the
anti-Hermitian part does not contribute to Eq. (4.40). By integrating by parts and
using the equations of motion for the uR fields (or, equivalently, by performing a
field redefinition), we can rewrite the operator in Eq. (4.40) in the following form

Ou � 2 v
2

f 2
h .y
u Q�u/ij ui

Luj
R C h:c: (4.41)

This operator induces a correction to the Higgs couplings to the up-type quarks.
Notice that, in general, the Q�u matrix is not aligned with the quark mass matrix
yu, thus the Higgs interactions due to the operator Ou can mediate flavor-changing
effects. To get an estimate of these effects it is convenient to rewrite the coupling
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matrix in the mass-eigenstate basis:

y
u Q�u ! .ULy
uU

R/.UR Q�uU


R/ D yD
u .UR Q�uU


R/ : (4.42)

By using the estimates for the quark masses and for the elements of the UR rotation
matrix we finally get

Ou � 2

g2�
v2

f 2
�i

qL
�i

uR

g�
�i

uR
�j

uR
h ui

Luj
R C h:c: (4.43)

This result shows that the flavor-changing couplings of the Higgs arise at order 
and are weighted by four powers of the elementary/composite mixings.

The second operator in Eq. (4.39) induces similar effects although the analysis
is slightly more involved. As we saw, the d-symbol operators gives rise only to
interaction terms. On the contrary, the O0

u operator also induces a contribution to
the kinetic terms of the elementary fields. This correction can be removed by a
field redefinition which does not significantly alter the estimates we obtained for
the VCKM matrix and for the quark masses.6 After the field redefinition an analysis
similar to the one we described above can be used to derive the induced Higgs flavor-
violating couplings. Derivative operators analogous to the ones in Eq. (4.39) can
also be written for the qi

L and the di
R elementary fields. They can be analyzed along

the lines of the previous discussion and give rise to similar Higgs flavor-changing
interactions.

It is interesting to notice that, in addition to the Higgs couplings, the O.p/
effective operators also induce modifications of the EW bosons interactions which
can generate additional flavor effects. Important corrections can arise for the W
boson couplings. For instance couplings involving the right-handed quarks, which
are absent in the SM, can be generated (see Sect. 4.2.1 for an analysis of these
effects). Moreover the couplings to the left-handed quarks can be modified so that
the unitarity of the CKM matrix is violated. This effect can be relevant for the quarks
with a sizable amount of compositeness, as the top in the anarchic scenarios. We
postpone a discussion of this effect to Sect. 7.3.

4.2 Constraints on the Anarchic Scenario

We are now ready to analyze the main flavor-violating effects in the anarchic
scenario. Before entering into the specific details, it is possible to derive an
important qualitative feature that stems from the general structure of partial
compositeness. As we discussed at length in Chap. 2, any insertion of an elementary

6The field redefinition can be numerically relevant for the top quark given its sizable degree of
compositeness. It is instead typically negligible for all the other quarks.
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Fig. 4.1 Generation of
4-fermion interactions in
partial compositeness

field in a low-energy effective operator is necessarily weighted by the corresponding
amount of compositeness or, in other words, is accompanied by the related
elementary/composite mixing. We exploited this feature in the anarchic construction
to generate the quark masses and the VCKM structure. In this way we were naturally
driven to the assumption that the mixings have a hierarchical structure such that the
light quarks (essentially the ones belonging to the first and second generations) have
only tiny mixings with the composite dynamics. The same structure also determines
the size of the flavor-violating effective operators. A typical example are the 4-
fermion contact interactions, which are generated by the composite dynamics as
shown in Fig. 4.1. It is easy to understand that operators involving the light SM
quarks are highly suppressed by the tiny mixings and only induce small flavor-
violating effects. This feature of the anarchic scenario was first noticed in the
holographic realizations of the composite Higgs idea and is usually referred to as
the “RS-GIM mechanism” [1, 2, 4].

It is important to mention that, in scenarios that do not respect the “single
mixing” hypothesis multiple contributions to the effective flavor-violating operators
can arise, corresponding to the different �i mixings. Usually the most important
new physics contributions are mediated by the largest mixings. However, depending
on the quantum numbers of the composite operators some selection rules can
be present. For instance this happens if the elementary states are mixed with
composite operators with different SO.4/�U.1/X charges. In this case, analogously
to what we discussed in Sect. 4.1 for the generation of the Yukawa couplings, the
representations of the composite operators that mediate the flavor-violating effects
must be “compatible” with each other.

In the following we will discuss quantitatively the flavor-violating effects and
we will derive some estimates of the constraints on the anarchic scenario coming
from flavor measurements. For this purpose, as we did in the rest of this chapter, we
will adopt the One Scale One Coupling power counting described in Chap. 3. The
implications of relaxing this assumption will be discussed in Sect. 4.2.4.

Some of the most “dangerous” flavor-violating effects are related to the presence
of FCNC’s. In the SM, FCNC’s are absolutely absent at tree-level thanks to the
fact that the Higgs and Z-boson couplings are flavor-diagonal. This is in general not
true in BSM models. We already saw in Sect. 4.1.2 that in the composite scenario the
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Higgs field can mediate flavor changing effects, although, in a large class of models,
these effects are only generated at subleading order in the elementary/composite
mixings. As we will discuss in the following, the Z couplings can also mediate
flavor-changing currents at tree-level. Furthermore, the composite dynamics can
give rise to contact interactions that do not preserve the flavor quantum numbers, as
for instance 4-fermion operators involving fields from different generations. As we
already mentioned, a typical mechanism generating these operators is the exchange
of vector resonances, as for instance “heavy gluons” or states with EW quantum
numbers. These effects, however, can also arise as purely contact interactions at the
cut-off scale where the composite dynamics becomes completely non-perturbative.

The relevant flavor-violating observables belong to two broad categories, namely
the processes that involve �F D 1 or �F D 2 transitions. The new physics effects
in each class are determined by a different set of effective operators. In particular
the�F D 1 effects are mainly mediated by flavor-changing distortions of the gauge
field interactions, whereas the leading contribution to �F D 2 processes is due to
4-fermion contact interactions.

In addition to the flavor-violating processes, it is also worth mentioning the
constraints coming from the bounds on the neutron EDM. These measurements
can be used to derive strong bounds on CP-violating effects induced by flavor-
conserving operators with a structure similar to the ones contributing to �F D 1

processes.
Before analyzing in details the bounds it is important to stress that several new-

physics effects can simultaneously contribute to each observable. For simplicity,
in deriving the bounds we consider each new-physics operator separately. This is
somewhat equivalent to assume that the various contributions are uncorrelated and
accidental cancellations do not happen. However it should be kept in mind that,
when more operators are active at the same time, the bounds can get somewhat
weaker (see for instance Fig. 6 of [11]).

4.2.1 �F D 1 Transitions

We begin the discussion by considering the �F D 1 observables. In the composite
Higgs scenarios the new physics contributions to these processes are mainly due to
three classes of operators. The first one includes the dipole operators

L�FD1 � �i�j

g�
v

m2�
f i��	gSMF�	SM fj ; (4.44)

where F�	SM collectively denotes the field strength of the SM gauge fields and gSM is
the corresponding coupling. We used the fi;j symbols to denote any SM quark (i; j
must be interpreted as “condensed” indices collecting the flavor quantum numbers
as well as the chirality), while �i;j are the relevant elementary/composite mixings.
To be as general as possible, we estimated the size of the coefficient in Eq. (4.44)
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by assuming that the dipole operators are generated at tree level by the composite
dynamics. In the literature, however, the dipole operators are usually considered
as one-loop effects, which implies an additional suppression factor g2�=.16�2/.
This choice comes from the observation that, in the known explicit models, the
dipole operators can not be generated through the tree-level exchange of composite
resonances and only arise at the radiative level.

The second class of operators contributing to the �F D 1 processes contains the
penguin operators that lead to modifications of the Z boson couplings. The leading
operators in this set arise at dimension 6 and contain two powers of the Higgs field:

L�FD1 � �i�j

m2�
f i�

�fjiH



$
D�H ; (4.45)

where H

$
D�H � H
D�H � .D�H/
H.

The last class of �F D 1 effects are related to operators that modify the W
boson couplings. Among this set, the most relevant operators are those that induce
interactions involving the right-handed quarks, whose structure is given by

L�FD1 � �i�j

m2�
ui

R�
�dj

RiHc
D�H ; (4.46)

where Hc � i�2H� is the charge-conjugated Higgs doublet.
Additional subleading contributions to the gauge boson couplings can come from

dimension-6 operators containing multiple derivatives. For instance, the Z boson
couplings can receive extra corrections from operators of the form

�i�j

m2�
1

g2�
f i��fjgSMD	F

�	
SM : (4.47)

These operators lead to effects that are suppressed by a factor � .gSM=g�/2
compared those induced by the penguin operators in Eq. (4.45) and can be usually
neglected. Similarly, the W boson couplings can be modified by operators contain-
ing derivatives of the elementary quarks:

�i�j

g�m2�
ui

RiHc
 =D =Dqj
L ;

�i�j

g�m2�
d

i
RiH
 =D =Dqj

L : (4.48)

By using the equations of motion for the elementary fermions, these operators
can be put in the same form of the operators in Eq. (4.46). They are however
characterized by a completely different power counting. The operators in Eq. (4.46)
arise at quadratic order in the elementary/composite mixings. On the contrary, the
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operators in Eq. (4.48) generate a similar contribution but only at order �4,7 and thus
induce subleading corrections to the W couplings. Although formally subleading,
the derivative operators in Eq. (4.48) can become relevant for the analysis of the
flavor bounds because in several cases the leading operators vanish as a consequence
of some discrete symmetries of the composite dynamics. We will discuss this aspect
with more details later on when we will analyze the experimental constraints.

Finally,�F D 1 flavor-changing effects can also be mediated by the Higgs field.
As we showed in the previous section, in many minimal models, these effects are
suppressed thanks to the Goldstone nature of the Higgs and only arise at subleading
order in the elementary/composite mixings. In the following we assume that this
mechanism is at work and we neglect these kind of effects.

We will now discuss the experimental bounds on each class of�F D 1 operators.
We will start by analyzing the EW and QCD dipole operators and then we will
consider the modifications of the Z and of the W couplings.

The EW Dipole Operators

One of the strongest bounds on flavor-violating EW dipole operators comes from
the b! s� transitions. Following the standard notation we encode the new-physics
effects in the effective Hamiltonian [12]

Hb!s� D GFp
2

VtbV�
ts

e mb

4�2

h
C7� sL�

�	bRF�	 C C0
7� sR�

�	bLF�	
i
; (4.49)

where GF D 1=.2v2/ denotes the Fermi constant, F�	 is the photon field strength
and e is the electric charge. By matching the above operators with Eq. (4.44) and
using the estimates of the elementary/composite mixings derived in Sect. 4.1, we
find that the composite Higgs contributions to the C.0/

7� coefficients are of the order8

C7� �
p
2

GF

4�2

mb

1

VtbV�
ts

�02
qL
�3dR

g�
v

m2�
� 8�2

GF

1

m2�
�2C

VtbV�
ts

; (4.50)

C0
7� �

p
2

GF

4�2

mb

1

VtbV�
ts

�03
qL
�2dR

g�
v

m2�
� 8�2

GF

1

m2�
�2C

VtbV�
ts

�
ms

mb

1

�4C

�
: (4.51)

7The additional factor �2 comes from the quark mass factor that comes from the equations of
motion.
8In order to properly match the coefficients of the effective operators with the general estimates of
partial compositeness, all the quantities must be evaluated at the m

�
scale. To keep our discussion

as simple as possible we avoid to explicitly include the running effects in our equations. We
however include them in the numerical results (for this we assume m

�
� 1TeV). We refer the

interested reader to the original literature [14–17].



152 4 Flavor

We can now compare these results with the experimental constraints. The bounds
on the new-physics contributions to the C.0/

7� coefficients are approximately given
by [13]

jRe C7� j . 0:2 ; jIm C7� j . 0:6 ; jC0
7� j . 0:5 : (4.52)

Due to the significant asymmetry, we decided to list separately the bounds on the real
and imaginary part of the C7� coefficient. For the C0

7� coefficient, on the contrary, the
real and imaginary parts have comparable constraints and we only give the bound
on the absolute value. The results in Eq. (4.52) can be translated into lower bounds
on the composite dynamics scale m�. In particular the bounds on C7� correspond to

m� & 5TeV (from Re C7� ) ; m� & 3TeV (from Im C7� ) ; (4.53)

while the bound on C0
7� gives

m� & 11TeV (from C0
7� ) ; (4.54)

Notice that the new-physics contributions to the C.0/
7� coefficients are in general

complex and their complex phase is expected to be of order one. For this reason, to
derive the bounds in Eq. (4.53) we assumed that the effective operators are generated
with maximal complex phases. We will adopt this assumption also in the following
sections to derive all the flavor bounds.

If the dipole operators do not arise at tree level and are only generated at the
radiative level, the new-physics effects are strongly reduced and the bounds are
significantly relaxed. For instance, if we assume that the dipole operators arise at one
loop, the experimental constraints can be expressed as lower bounds on m�=g� ' f
and can be estimated as

f & 0:4TeV (from Re C7� ) ; f & 0:25TeV (from Im C7� ) : (4.55)

f & 0:9TeV (from C0
7� ) ; (4.56)

Additional constraints on the flavor-violating EW dipole operators come from
the b ! d� transitions. The analysis of these effects is completely analogous to
the one we used above for the b ! s� processes, so we skip all the details. The
bounds on the composite dynamics coming from the b! d� transitions are roughly
comparable to the ones given in Eqs. (4.53) and (4.54) [18].

The QCD Dipole Operators

Another observable that can give strong constraints on the dipole operators is the
direct CP violation in the K0 ! 2� decay, usually encoded in Re.�0

K=�K/ [15–
17]. This observable receives large contributions from the chromomagnetic
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operators

QG D CG
vp
2

sR�
�	gsG�	dL ; Q0

G D C0
G

vp
2

sL�
�	gsG�	dR ; (4.57)

whose coefficients can be estimated as

CG � 2ms�C

v

1

m2�
; C0

G �
2md

v�C

1

m2�
: (4.58)

The present measurements lead to a bound on the imaginary part of the C.0/
G

coefficients
ˇ̌
ˇ̌
ˇ

Im C.0/
Gp

2ms=v

ˇ̌
ˇ̌
ˇ .

1

.34TeV/2
; (4.59)

where C.0/
G and ms should be interpreted as running quantities computed at an energy

scale E D 1TeV. This result implies the following constraint on the m� scale

m� & 15TeV ; (4.60)

which is roughly valid for both effective operators. If the dipole operators are
generated at one loop, the above bound becomes

f & 1:2TeV : (4.61)

Constraints roughly of the same order can be obtained for the QCD dipole
operators that mediate b! s, b! d and c! u transitions [18, 19].

Z Couplings Modifications

Let us now consider the penguin operators whose general structure is given in
Eq. (4.45). After EWSB these operators generate new gauge interactions involving
the Z boson. In particular they can give rise to flavor-changing interactions which are
absent at tree-level in the SM. To compare the Z-mediated flavor-violating effects
with the experimental data it is customary to encode the new physics contributions
into 4-fermion effective operators. By integrating out the Z, the powers of the Higgs
VEV v and the gauge couplings cancel against the Z boson mass and the following
effective operator is obtained at leading order in the elementary/composite mixings

�i�j

m2�
f i�

�fjJ
.Z/
� : (4.62)
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In the above equation J.Z/� represents the usual SM current

J.Z/� D
X

f i��
�
.t3L � 2q sin2 �w/� t3L�

5


fi ; (4.63)

where t3L denotes the charge of the fi fermion with respect to the Abelian subgroup
of SU.2/L generated by t3L, while q is the electric charge.

Before considering the implications of the experimental measurements, it is
useful to discuss how the presence of discrete symmetries can protect the Z-boson
couplings by forbidding the generation of some of the operators in Eq. (4.45). In
the class of composite Higgs scenarios based on the minimal coset SO.5/=SO.4/,
two discrete Z2 symmetries can be used to forbid the generation of penguin
operators [20]. The first one is the PLR symmetry which acts by exchanging the
SU.2/L and SU.2/R generators inside SO.4/ (see section “Discrete Symmetries” in
Appendix in Chap. 3 for more details). It will be shown in section “The Custodial
Symmetries” in Appendix in Chap. 7 that this symmetry protects the couplings of
the Z boson to any current built from elementary states whose mixing with the
composite dynamics preserves the PLR invariance. The second symmetry that can
protect the Z couplings is a discrete Z2 subgroup, called PC, of the custodial group
SO.3/c.9 It is defined in such way that its action on the SU.2/L�SU.2/R eigenstates
exchanges the sign of the t3L;R charges, namely jtL; tRI t3L; t3Ri ! jtL; tRI �t3L;�t3Ri.
Analogously to the PLR case, a current which is even under PC has a protected
coupling to the Z boson. Typical cases are the currents built from fields with
t3L D t3R D 0 which are eigenstates of PC.

The discrete Z2 symmetries preserved by the mixing of the elementary quarks
with the composite fermionic operators, depending on the SO.4/ quantum numbers
of the latter operators, are given in Table 4.1. From this table it is straightforward
to derive which couplings are protected in the minimal models. We will list a
few common scenarios in the following. If the composite operators belong to the
spinorial SO.5/ representation (see Eq. (4.14)) all the mixings break the discrete
symmetries and the Z couplings are not protected. The situation is different for the
models based on the fundamental, the adjoint and the 14 representations. In the

Table 4.1 List of the discrete
Z2 symmetries preserved by
the mixing of the elementary
fermions with composite
operators in different
SU.2/L � SU.2/R � U.1/X
representations

.2; 1/1=6 .2; 2/2=3 .2; 2/
�1=3

uL � � PLR

dL � PLR �
.1; 1/2=3 .1; 1/

�1=3 .1; 2/1=6 .1; 3/2=3 .1; 3/
�1=3

uR PLR ;PC � PC �
dR PLR ;PC � � PC

The � symbols indicates that both PLR and PC are broken

9See Sect. 2.2.2 for a first description of the custodial group and section “The Custodial Symme-
tries” in Appendix in Chap. 7 for a complete discussion.
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case of the adjoint 102=3 (see Eq. (4.15)) the couplings of the left-handed down-type
quarks are protected as well as the couplings of the right-handed up-type singlets.
Finally in the case of the 5 (Eqs. (4.16) and (4.17)) and of the 14 (Eq. (4.19)) a
more complex pattern appears. The mixing of the right-handed quarks respects both
discrete symmetries. The left-handed qL doublet, instead, must be necessarily mixed
with (at least) two operators in order to generate all quark masses. The mixings with
the .2; 2/2=3 operators, which induces the up-type quark masses, respects the PLR

symmetry for the di
L fields but not for the ui

L’s. On the other hand, the mixing that
leads to the down-type quark masses (with the .2; 2/�1=3 states) preserves the PLR

invariance only for the ui
L states. Following these patterns, in deriving the bounds

we will assume that the flavor-violating Z couplings involving the di
L fields are only

generated through the �0i
qL

mixings and not through the up-type ones.
We can now discuss the implications of the flavor measurements. The flavor-

violating penguin operators more strongly constrained from the experimental data
are the ones involving the down-type quarks and, in particular, the ones that lead to
b! s and s! d transitions.

The leading new-physics corrections to the b ! s transitions can be encoded in
the following effective Hamiltonian [11]

Hb!s D GFp
2

VtbV�
ts

e2

4�2

h
C10.sL�

�bL/.`���
5`/C C0

10.sR�
�bR/.`���

5`/
i
:

(4.64)

Additional operators involving the vector lepton current `��` are present, but they
are suppressed with respect to the above ones by the small factor 1 � 4 sin2 �w D
0:08 that appears in the SM Z-boson current. By using the result in Eq. (4.62) the
coefficients of the effective operators can be estimated as

C10 � 4�2

GFe2
�2C

VtbV�
ts

1

m2�
mt

v

g�xt

z2
; (4.65)

C0
10 �

4�2

GFe2
�2C

VtbV�
ts

1

m2�
mt

v

g�z2

xt

�
msmb

�4Cm2
t

�
: (4.66)

As we explained before, these estimates apply only to the models in which the ele-
mentary states are mixed with composite operators in the 4, 5 or 14 representations
of SO.5/. In the last two cases the flavor-violating effects come only from the mixing
with the .2; 2/�1=3 operators needed to give mass to the down-type quarks. In the
models based on the 102=3 SO.5/ representation, on the contrary, the contributions
to C10 vanish at leading order in the elementary/composite mixings.

The bounds on the effective operators can be derived from a global analysis of
inclusive and exclusive b! s`C`� decays [11, 13]:

jC10j . 2:6 ; jC0
10j . 3:1 : (4.67)
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The bound on the left-handed operator translates into a relatively strong constraint
on m�:

m� & 3

p
g�xt

z
TeV : (4.68)

On the contrary, the bound on C0
10 does not give any significant constraint as a

consequence of the suppression factor, msmb=.�
4
Cm2

t / ' 2 � 10�3, that appears in
Eq. (4.66).

Let us now consider the s ! d transitions. One of the strongest constraint on
these processes comes from the KL ! �C�� decay. The new-physics contributions
come from the flavor-changing Z interactions and can be encoded in the following
effective operators

Ls!d D � g

cw
Z�
�
ıgds

L dL�
�sL C ıgds

R dR�
�sR C h:c:

�
: (4.69)

The coefficients in the above formula can be estimated as

ıgds
L �

mtvp
2

1

m2�
g�xt

z2
�5C ; ıgds

R �
mtvp
2

1

m2�
g�z2

xt
�5C

�
mdms

�10C m2
t

�
: (4.70)

Notice that the right-handed transitions are suppressed with respect to the left-
handed ones by a factor mdms=.�

10
C m2

t / ' 0:02. The experimental measurements
correspond to a bound [21]

ˇ̌
ıgds

L;R

ˇ̌
. 6 � 10�7 ; (4.71)

from which the following bounds can be derived

m� & 4:7

p
g�xt

z
TeV (from ıgds

L ) ; (4.72)

m� & 0:7

r
g�
xt

z TeV (from ıgds
R ) : (4.73)

As a consequence of the Z2 symmetries, in the “single mixing” models based
on the 102=3 representation, the only relevant bound is the one coming from the
right-handed current in Eq. (4.73). The bound in Eq. (4.72), instead, applies to
the scenarios in which the elementary quarks are embedded in the spinorial or
fundamental representation.

Constraints on the effective operators in Eq. (4.69) can also be obtained from
the rare Kaon decay KC ! �C		 and from the measurement of the Re.�0

K=�K/

parameter. We already showed how the latter observable can be used to derive strong
constraints on the QCD dipole operators. When considered in the context of penguin
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operators, the measurement of Re.�0
K=�K/ leads to a bound on the left-handed flavor-

violating Z currents comparable to the one in Eq. (4.72) [16, 22].
To conclude the discussion we briefly mention another class of constraints on the

penguin operators related to flavor-conserving observables. In the anarchic scenarios
the most relevant effect of this type is the modification of the Z interactions with the
third-generation quarks. Among these observables the coupling to the left-handed
bottom quark is the one that has been measured with the best precision (at the 0:1%
level) and can be used to set the most stringent constraints. Due to the high precision,
the measurement of the ZbLbL vertex is usually included among the EW precision
tests together with the oblique EW parameters [23, 24]. We postpone a detailed
discussion of the ZbLbL observable to Chap. 7, where we will analyze it in the more
general context of the EW precision data. Here we only derive some rough estimates
along the lines of Sect. 3.2.2 and compare the resulting bounds with the ones coming
from flavor-violating processes.

From Eq. (4.45) we find that the deviations in the bottom couplings to the Z boson
are of order10

ıgbL '
.�03

qL
/2

2m2�
v2 ' 1

m2�
mtvp
2

g�xt

z2
;

ıgbR '
.�3dR

/2

2m2�
v2 ' 1

m2�
mtvp
2

g�z2

xt

�
mb

mt

�2
:

(4.74)

The deviation in the right-handed coupling is usually much smaller than the experi-
mental precision on gbR (see Fig. 7.11). For the left-handed coupling the situation is
very different. The present data show a mild tension with the SM prediction at the
2:5� level (see Fig. 7.11). The precise bound on ıgbL thus crucially depends on the
sign of the new-physics contributions. To get a rough model-independent estimate
of the constraints we assume that the new-physics contributions should be smaller
than the overall precision on gbL and we impose the condition jıgbL j . 10�3. In this
way a strong lower bound on m� is obtained

m� & 5

p
g�xt

z
TeV : (4.75)

This bound is comparable to the ones we derived from flavor-violating processes
(see Eqs. (4.68) and (4.72)).

W Couplings Modification

The last class of operators relevant for the �F D 1 processes includes the ones
that lead to distortions of the W-boson couplings. The general structure of these

10See Eq. (7.24) for the exact definition of the bottom couplings.
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Fig. 4.2 Examples of one-loop diagrams contributing to the C7� (on the left) and C0

7� (on the
right) coefficients of the dipole operators in Eq. (4.49). The gray circles represent the insertions of
the effective WtRbR and WtRsR vertices

operators is shown in Eq. (4.46). An effective way to constrain such operators is
to focus on their contributions to b ! s� transitions [8, 17]. In composite Higgs
scenarios the largest new-physics effects are due to new W interactions involving
the right-handed top component, which generate one-loop contributions to the C7�
and C0

7� coefficients (see Eq. (4.49)). The structure of the relevant diagrams is shown
in Fig. 4.2. Notice that similar contributions are also present in the SM. In this
case, however, the purely left-handed structure of the W couplings implies a strong
helicity suppression of the b ! s� transitions. This suppression is instead lifted if
right-handed couplings exist.

In anarchic composite Higgs scenarios, the most relevant effects are due to the
WtRbR vertex, which generates a correction to C7� , and to the WtRsR coupling, which
contributes to C0

7� . The size of the WtRbR coupling coming from the operators in
Eq. (4.46) can be estimated as

gp
2

v2

2

�3uR
�3dR

m2�
.tR =WbR/C h:c: ' g

2

z

xt

g�v
m2�

mb.tR =WbR/C h:c: ; (4.76)

which leads to the following contribution to C7� [17]:

C7� � 1p
2

mtg�v
z

xt

1

m2�
A7.m

2
t =m2

W/ ; (4.77)

where A7.m2
t =m2

W/ ' �0:8. Analogously we can derive an estimate of the size of
the WtRsR interaction

gp
2

v2

2

�3uR
�2dR

m2�
.tR =WsR/C h:c: ' g

2

z

xt

g�v
m2�

ms

�2C
.tR =WsR/C h:c: ; (4.78)

and the corresponding contribution to C0
7� :

C0
7� �

1p
2

mtg�v
z

xt

1

m2�

�
ms

mb�
4
C

�
A7.m

2
t =m2

W/ : (4.79)
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It is interesting to notice that the above correction to C0
7� is enhanced with respect to

the one to C7� in Eq. (4.77) by a factor ms=.mb�
4
C/ � 8. This enhancement exactly

matches the one that we found for the contributions to C7� and C0
7� coming from the

dipole operators (see Eqs. (4.50) and (4.51)).
The bounds in Eq. (4.52) can be translated in the following constraints on the

composite mass scale m�:

m� & 0:3

r
g�z

xt
TeV (from C7� ) ; m� & 0:5

r
g�z

xt
TeV (from C0

7� ) : (4.80)

These bounds are much weaker than the ones coming from the dipole operators,
especially if we assume that the latter are generated at tree-level (see Eqs. (4.53)
and (4.54)).

It is interesting to notice that the operators in Eq. (4.46), which we used to
estimate the corrections to the W couplings, are forbidden in many models as a
consequence of the custodial invariance. This happens if the mixing of the right-
handed quarks fRi to the composite dynamics preserves the SO.4/ symmetry. In this
case the composite operators coupled to the fRi fields are singlets under the custodial
symmetry and can not generate a current with the appropriate quantum numbers to
couple to the W bosons (which transform as a triplet under the SO.3/c custodial
group). An example of such situation are the models in which the composite
operators belong to the fundamental or to the 14 representations of SO.5/.

Notice that the custodial symmetry protects the W couplings only at zero
momentum. Indeed, W interactions with the right-handed quarks can still be
generated by operators involving derivatives of the quarks. These operators are non-
vanishing because they are “sensitive” to the breaking of the custodial invariance
induced by the mixing of the left-handed quarks. Operators of this kind are shown in
Eq. (4.48) and give rise to the relevant interactions once we put the quarks on-shell.
The operators that generate the largest contribution to WtRbR are

�3qL
�3uR

g�m2�
.tRiHc
 =D =Dq3L/ ;

�03
qL
�3dR

g�m2�
.bRiH
 =D =Dq3L/ : (4.81)

By using the equations of motion for the elementary fermions, i =DfLi D mifRi, we can
see that both operators give rise to an effective interaction with a strength of order

2
gp
2

mtmb

m2�
.tR =WbR/C h:c: (4.82)

Similar considerations apply to the WtRsR interaction, which is mainly due to the
operator

�03
qL
�2dR

g�m2�
.sRiH
 =D =Dq3L/ ; (4.83)
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and can be estimated as

2
gp
2

mtms

m2�
1

�2C
.tR =WsR/C h:c: (4.84)

As expected, in the custodially-invariant scenarios, the right-handed W couplings
arise only at fourth order in the elementary/composite mixings. Moreover they
are necessarily weighted by the left-handed mixings �.0/qL , which are the only ones
that break the custodial symmetry. As a consequence the estimates in Eqs. (4.82)
and (4.84) differ with respect to the general ones (see Eqs. (4.76) and (4.78)) by a
factor

� �3qL
�03

qL

g2�
'
p
2mt

v

xt

g�z
: (4.85)

This factor implies a mild suppression, which is significant only for large values of
g�. By using the bounds in Eq. (4.52) the following constraints on m� can be derived

m� & 0:3TeV (from C7� ) ; m� & 0:5TeV (from C0
7� ) : (4.86)

4.2.2 �F D 2 Transitions

Another set of constraints on the anarchic composite Higgs scenarios can be derived
from the �F D 2 flavor-violating transitions. The main short-distance sources
contributing to these processes are the contact operators of the type

L�FD2 � �i�j�k�l

g2�
1

m2�
. f i�

�fj/. f k�� fl/ : (4.87)

Additional long-distance contributions can be mediated by the exchange of the Z
boson or the Higgs via a pair of �F D 1 flavor-violating vertices. By using the
estimate in Eq. (4.45), it is easy to show that the Z-mediated effects are suppressed
by a factor v2=f 2 with respect to the short-distance ones in Eq. (4.87). The Higgs-
mediated effects, on the other hand, can lead to sizable effects if they are generated
at leading order in the elementary/composite mixings:

�i�j

m�f
f iHfjH


H : (4.88)

By integrating out the Higgs, the ratio between the long-distance effects and the
short-distance ones in Eq. (4.87) is found to be of order

� g2�
v2

f 2
v2

m2
h

' g2�
�
500GeV

f

�2
: (4.89)
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This shows that, on general grounds, the Higgs-mediated effects could be large and
could even dominate over the short-distance ones. However, as we discussed in
the previous section, in a large class of minimal scenarios, the Higgs interactions
are protected by the Goldstone structure and flavor-violating vertices are strongly
suppressed . In this case the Higgs mediated contributions to�F D 2 transitions are
reduced by a factor � y2t =.4�/

2 and are under control. In the following we assume
that the protection mechanism is at work and we only focus on the flavor-violating
effects coming from short-distance operators.

By the use of Fierz identities the 4-fermion contact operators relevant for�F D 2
flavor-violating transitions can be reduced to 8 independent Lorentz structures.
Their explicit form is

Qij
1 D . f

˛

iL�
�f ˛jL/. f

ˇ

iL��f ˇjL/ ; (4.90)

Qij
2 D . f

˛

iRf ˛jL/. f
ˇ

iRf ˇjL/ ; (4.91)

Qij
3 D . f

˛

iRf ˇjL/. f
ˇ

iRf ˛jL/ ; (4.92)

Qij
4 D . f

˛

iRf ˛jL/. f
ˇ

iLf ˇjR/ ; (4.93)

Qij
5 D . f

˛

iRf ˇjL/. f
ˇ

iLf ˛jR/ ; (4.94)

and the remaining 3 operators QQij
1;2;3 are obtained from the Qij

1;2;3 operators by
flipping the quark chiralities. In the above operators i; j denote the flavor indices,
while ˛; ˇ are color indices. Within the One Scale One Coupling power counting,
the coefficients of these operators only depend on the fermion species and chiralities
that are involved. However extra suppressions are possible in explicit models where
the operators are generated by the exchange of vector resonances. In this case,
for instance, Q2;3 and QQ2;3 can not be generated at the tree-level and thus their
coefficient displays a loop suppression. Moreover, different operators are associated
to the exchange of different kinds of resonances, so that their coefficient is controlled
by the masses and the couplings of different particles, which can be numerically
different in the specific model. For instance it is easy to see, using Fierz identities,
that Q4 can only arise from the exchange of vector resonances with non-trivial
QCD quantum numbers. On the other hand, vector states charged only under
SO.5/ � U.1/X can only give rise to the Q1, QQ1 and Q5 operators. In what follows
we will estimate the constraint by using the generic One Scale One Coupling power
counting estimate. However since some of the strongest constraints come from Q2,QQ2 and Q4 operators, the selection rule described above can have an important
impact on the interpretation of the experimental bounds in explicit models. Also
numerical suppression or enhancement factors due to the multiplicities and the
charge of the exchanged resonances can have an impact. We refer the interested
reader to [8, 25] for details.
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The Kaon System

The first set of experimental measurements we consider are the ones related to the
Kaon system. The main flavor-violating effects in this system are related to the

mixing of the K0 resonance with the corresponding anti-particle K
0

and are encoded
in the observables�mK and �K . The short-distance new-physics contributions to this
processes are due to �S D 2 contact interactions involving two s and two d quarks.

For illustrative purposes we will focus only on the effective operators Qsd
1 ,

Qsd
2 and Qsd

4 , whose bounds lead to the strongest constraints on the new-physics
dynamics.11 The experimental results are usually expressed as constraints on the
couplings C that appear in the effective Lagrangian

L�FD2 D
X C.Qi/

ƒ2
Qi : (4.95)

The mass scaleƒ is conveniently chosen to beƒ D 1TeV. As we will see, this mass
scale is of the same order of the typical flavor bounds on the new physics scale in
the composite Higgs scenarios, thus helping to keep running effects under control.
The current constraints can be expressed as follows [26, 27]

jRe C.Qsd
1 /j . 9:0 � 10�7 ; jIm C.Qsd

1 /j . 3:4 � 10�9 ; (4.96)

jRe C.Qsd
2 /j . 1:9 � 10�8 ; jIm C.Qsd

2 /j . 1:0 � 10�10 ; (4.97)

jRe C.Qsd
4 /j . 6:9 � 10�9 ; jIm C.Qsd

4 /j . 2:6 � 10�11 ; (4.98)

where, due to the significant asymmetry in the bounds, we reported separately the
ones on the real and imaginary parts of the coefficients. The bounds on C.Qsd

2 / also
apply to the C. QQsd

2 / coefficient.
The size of the new-physics contributions to the effective operators can be

estimated as

C.Qsd
1 / �

 p
2mt

v

!2
x2t �

10
C

1

m2�
; (4.99)

C.Qsd
2 / �

 p
2ms

v

!2
z2�2C

1

m2�
; (4.100)

C. QQsd
2 / �

 p
2md

v

!2
z2

�2C

1

m2�
; (4.101)

11In the cases we consider the QQ1 operator is generated with a smaller coefficient than Q1, while
the bounds on the two operators are comparable. The Q2 and Q3 operators are expected to have
similar size, but the bounds on the former are always tighter. The same happens for Q4 and Q5 [27].
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C.Qsd
4 / �

p
2ms

v

p
2md

v
z2
1

m2�
: (4.102)

Notice that, in deriving the above expressions, we took into account the fact
that, if the left-handed quarks are mixed with different composite operators,
multiple independent contributions to the contact interactions can be generated.
Typical examples are the models in which the composite operators belong to the
fundamental SO.5/ representation. As we discussed in Sect. 4.1, in these set-ups the
left-handed quarks are mixed with two composite operators belonging to the 52=3
and 5�1=3 representations of SO.5/ � U.1/X . In Eqs. (4.99)–(4.102) we reported
the contributions coming from the mixing that generates the up-type quark masses,
which gives the leading new-physics effect. To obtain the results in the scenarios
with only one mixing, it is enough to set z D 1.

The experimental constraints can be easily translated into lower bounds on
the scale of the composite dynamics m�. The numerical values of the bounds
coming from the various operators are roughly comparable, although each one has
a different parametric dependence on the free parameters xt and z. By assuming a
maximal complex phase for the new-physics contributions, the constraints on the
Qsd
1 operator give the following results

m� & 0:4 xt TeV from Re C.Qsd
1 / ;

m� & 6 xt TeV from Im C.Qsd
1 / :

(4.103)

The bounds on Qsd
2 and QQsd

2 correspond respectively to

m� & 0:4 z TeV from Re C.Qsd
2 / ;

m� & 5 z TeV from Im C.Qsd
2 / ;

(4.104)

and

m� & 0:4 z TeV from Re C. QQsd
2 / ;

m� & 6 z TeV from Im C. QQsd
2 / :

(4.105)

Finally, for the Qsd
4 operator we get

m� & 0:6 z TeV from Re C.Qsd
4 / ;

m� & 10 z TeV from Im C.Qsd
4 / :

(4.106)

As can be easily seen from the above results, the constraints on m� coming from the
bounds on the imaginary part of the coefficients of the effective operators are quite
stringent and favor a compositeness scale around 10TeV. The bound can become
even more severe in the models with multiple mixings if z > 1, that is if the mixing
to the up-type operators is larger than the one to the down operators. In order to
minimize the constraints one needs to ensure that z ' 1, which requires the up-type
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mixings �i
qL

to be of the same size of the down-type ones �0i
qL

(see discussion in
Sect. 4.1). Notice also that the bounds coming from the Qsd

1 operator can be reduced
if xt < 1.

The Bd and Bs Systems

Other important constraints on the composite dynamics come from the flavor-
violating processes involving the Bd and Bs mesons. These observables can be
used to put some bounds on the class of effective 4-fermion interactions leading to
�B D 2 transitions, namely the Qbd and Qbs operators. The analysis of these effects
is completely analogous to the one we described for the Kaon system, we thus skip
all the details and we only list all the constraints on the m� scale in Table 4.2.

An interesting difference with respect to the Kaon bounds, is the fact that the
constraints from the Bd;s systems are nearly independent of the complex phase in
the new-physics operators. In particular the strongest constraints come from the Q1

operators and are given by

m� & 5 xt TeV from Re C.Qbd
1 / ;

m� & 7 xt TeV from Im C.Qbd
1 / ;

(4.107)

for the Bd system and

m� & 5 xt TeV from Re C.Qbs
1 / ;

m� & 8 xt TeV from Im C.Qbs
1 / ;

(4.108)

Table 4.2 Lower bounds on the composite dynamics scale m
�

(expressed in TeV) obtained from
the �F D 2 flavor-violating processes

Operator Re C Im C Observables

Qsd
1 0:4 xt 6 xt �mK I �K

Qsd
2 0:4 z 5 z ”

QQsd
2 0:4 z 6 z ”

Qsd
4 0:6 z 10 z ”

Qbd
1 5 xt 7 xt �mBd I S KS

Qbd
2 1:4 z 2 z ”

Qbd
4 0:6 z 0:8 z ”

Qbs
1 5 xt 8 xt �mBs

Qbs
2 0:6 z 1 z ”

Qbs
4 0:5 z 1 z ”

Qcu
1 0:5 xt 1:2 xt �mDI jq=pj; �D

Qcu
2 1:4 3 ”

Qcu
4 0:5 1:1 ”

The bounds coming from the constraints on the real and imaginary parts of the coefficients of the
effective operators are listed separately and are derived by assuming maximal complex phases in
the new-physics contributions. The constraints on the effective operators are taken from [26, 27].
The last column lists the observables used to derive the bounds
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for the Bs system. Analogously to what we found for the Kaon observables, the
flavor bounds in Eqs. (4.107) and (4.108) can be relaxed if xt < 1.

The D System

Another set of constraints on the 4-fermion flavor-violating interactions comes
from the D system. Differently from the K and B mesons, which are described
by operators involving the down-type quarks, the D observables are influenced
by operators involving the up-type quarks. In particular the new-physics contact
interactions that mediate�C D 2 transitions are parametrized by the Qcu operators.
The constraints coming from the present measurements are listed in Table 4.2.

Notice that, as a consequence of the SU.2/L symmetry, the effective operators
parametrizing the flavor-violating observables in the D system are correlated to the
ones related to the K system. In particular the Qcu

1 operator belongs to the same
multiplet as the Qsd

1 operator, thus the constraints coming from the two operators
are not independent. Due to the better determination of the Kaon observables, the
bounds coming from the Qsd

1 interaction are currently stronger than the ones from
Qcu
1 . This is particularly noticeable on the bounds on the imaginary part of the Q1

coefficient, while the bounds on the real part are of the same order.

4.2.3 The Neutron EDM

As a last set of constraints on the flavor-anarchic scenarios we consider the ones
coming from the measurement of the neutron EDM dn. To estimate the bounds we
will closely follow the analysis of [16, 18]. The largest new-physics contributions
to dn arise from the flavor-conserving EW and QCD dipole operators

Off� D Cff�
e mf

16�2
f��	F�	�

5f ; Offg D Cffg
gsmf

16�2
f��	G�	�

5f ; (4.109)

where f D u; d denotes the first generation quarks. The calculation of the
contributions of the quark dipole operators to the neutron EDM suffers from large
hadronic uncertainties. By using the QCD sum rules the following estimate can be
derived [28]

dn D .1˙ 0:5/
�
1:4

�
dd � 1

4
du

�
C 1:1e

�
Qdd C 1

2
Qdu

�	
; (4.110)

where df and Qdf denote the electric and chromoelectric dipole moments of the quarks
defined as

df � e mf

8�2
Im Cff� ; Qdf � mf

8�2
Im Cffg : (4.111)
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The current experimental constraint on the neutron EDM is [29]

dn < 2:9 � 10�26e cm at 90 % C:L: (4.112)

Banning accidental cancellations among the various contributions, the following
constraints on the composite scale m� can be derived

m� & 60TeV from Odd� ; (4.113)

m� & 20TeV from Ouu� ; (4.114)

m� & 55TeV from Oddg ; (4.115)

m� & 25TeV from Ouug : (4.116)

It is important to stress that the neutron EDM is only generated by the CP-violating
effects induced by the imaginary part of the coefficients of the dipole operators.
The real part of Cff� and Cffg, instead, does not contribute to dn. The presence of
the above bounds is thus crucially related to the fact that, in the anarchic scenario,
order-one complex phases are generically expected in all new-physics operators.

Indirectly, the neutron EDM is also sensitive to the QCD dipole operators
involving the second and third generation quarks. This effect is due to the QCD
running of the dipole operators at low energy. When a heavy quark is integrated
out a threshold correction is generated that contributes to the three-gluon Weinberg
operator. This operator, in turn, directly contributes to the neutron EDM and
mixes under renormalization with the light quark dipole operators [30]. Taking
into account the experimental constraint in Eq. (4.112) the following bounds on the
charm, bottom and top chromoelectric dipole operators can be derived [31–33]

j Qdcj < 1:0 � 10�22 cm ; j Qdbj < 1:1 � 10�21 cm ; j Qdtj < 2:1 � 10�19 cm :

(4.117)

Although weaker than the bounds from the operators involving the first-generation
quarks, the bounds on the m� scale coming from the heavier quarks are still quite
stringent:

m� & 14TeV from Occg ; (4.118)

m� & 9TeV from Obbg ; (4.119)

m� & 5TeV from Ottg : (4.120)

To conclude we remind that, as we did in the whole analysis, to derive the above
bounds we assumed that the dipole operators are generated at tree level. If they can
only be induced by loop effects the above constraints must be interpreted as bounds
on the f scale rather than on m�. To derive the corresponding bound it is sufficient
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to use the replacement m� ! 4�f . Notice that, even assuming the extra suppression
the bounds remain quite strong. For instance, from the constraints on the operators
with first-generation quarks we get

f & 4:5TeV (d quark) ; f & 2TeV (u quark) : (4.121)

4.2.4 Beyond One Scale One Coupling

So far we analyzed the experimental constraints on the anarchic scenarios by
adopting the One Scale One Coupling assumption. However this can be a very crude
parametrization of the composite dynamics. We will now discuss how to obtain
some refinements. Doing this is particularly important because of the tension, which
we established in Chap. 3 (in particular, see the discussion at the end of Sect. 3.3.3),
among the scale of the bosonic vector resonances and the one of the composite
fermionic states. The former controls the corrections to EWPT observables and is
thus preferentially heavy, whereas the latter determines the generation of the Higgs
potential and is preferentially light in order to avoid fine-tuning in the Higgs mass.
For this reason it is worth introducing a new mass scale m (with its associated
coupling g D m =f ) that characterizes the fermionic states [16, 34, 35]. This scale
is taken to be smaller than the one of the vector resonances, which we keep calling
m�. The mass m , and in turn the coupling g , controls the breaking of the chiral
symmetry that is present in the limit of zero resonances mass. Any operator that
breaks this symmetry is thus weighted by g . These operators include the coupling
of the fermionic resonances to the Higgs, which now is proportional to g and not
g�. As a consequence the elementary/composite mixings are now connected to the
quark Yukawa’s by the relation yi � �Li�Ri=g .

One further generalization of the One Scale One Coupling assumption that is
worth considering is to allow for multiple mass scales and couplings for the vector
resonances, distinguishing those that carry QCD charge from the ones that are
color neutral. In what follows we will denote as mQCD� and gQCD� the QCD-colored
particles mass and coupling, reserving m� and g� to characterize the color-neutral
ones. Notice that the quantity mQCD� =gQCD� does not necessarily coincide with the
Goldstone boson decay constant f . On the other hand, for the fermionic resonances
m =g D f , given that the latter relation is taken as the definition of the effective
fermionic coupling g .

Going beyond the One Scale One Coupling assumption also requires one further
assumption on the composite sector dynamics. In particular in what follows we will
rely on the Vector Meson Dominance (VMD) hypothesis that we already introduced
and discussed at the end of Sect. 2.4.1. This is the idea that the communication
between the elementary and the composite sectors originates from mass-mixings of
the elementary fields with composite resonances of appropriate quantum numbers.
In this hypothesis the generation of the effective operators can be associate to
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Fig. 4.3 Schematic structure
of a diagram giving rise to a
4-fermion contact interaction
through the exchange of a
heavy vector resonance. The
double-line propagators
denote the composite states

Feynman diagrams and their coefficients estimated in terms of the relevant masses
and couplings.

We start by considering the 4-fermion effective interactions, associated with the
diagram in Fig. 4.3. Each insertion of an elementary fermion fi is weighted by its
amount of compositeness �i=g that comes from the mixing of the elementary
fermions with their fermionic partners, which has strength �f (see Eq. (2.102)),
times the 1=m from the fermionic partner propagator. An additional weight g2�=m2�
comes from the vector resonance propagator and from its couplings to the composite
fermionic resonances. By putting the factors together we find

L�FD2 � �i�j�k�l

g4 

g2�
m2�
. f i�

�fj/. f k��fl/ : (4.122)

The above derivation holds for color-neutral vector resonances, if the effective
operator is instead generated by the exchange of a colored vector resonance the
g2�=m2� factor must, obviously, be replaced by .gQCD� =mQCD� /2.

The modified power counting has some important consequences on the interpre-
tation of the flavor bounds. Keeping the Yukawa’s of the quarks fixed, the estimate
of the 4-fermion effective operators is rescaled by a factor .g�=g /2 with respect
to the One Scale One Coupling result in Eq. (4.87). The presence of light fermionic
partners thus worsens the flavor-violating effects. It is easy to check that, once the
Yukawa’s are fixed, the coefficient of the effective operators mediated by SO.5/
vector resonances depends only on the fermionic partners mass. This means that
the constraints must be interpreted as lower bounds on m , and not on the mass of
the vector states. The operators mediated by QCD states, instead, can be used to
derive constraints on the quantity mQCD� .g =gQCD� /. These bounds favor heavy and
relatively weakly coupled QCD resonances.

Similar considerations apply to the penguin operators whose estimate is modi-
fied as

L�FD1 � �i�j

g2 

g2�
m2�

f i�
�fjiH



$
D�H : (4.123)

With respect to the estimate in Eq. (4.45) the presence of light partners induces
an additional factor .g�=g /2. One power of g�=g is removed when we fix the
Yukawa couplings, thus leaving an enhancement g�=g of the effects of the penguin
operators.
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The situation is instead different for the dipole operators. In this case one has to
take into account the need of a chirality flip in the fermionic resonance line, i.e. of
a chiral symmetry protection that requires the presence of an extra m factor in the
coefficient of the operator. We thus find

L�FD1 � �i�j

g 

v

m2�
f i��	gSMF�	SMfj : (4.124)

Once the Yukawa’s are fixed this estimate coincides with the One Scale One cou-
pling result in Eq. (4.44), thus the bounds are unchanged. Obviously in Eq. (4.124)
m� corresponds to the mass of the relevant vector resonances contributing to the
effective operator. For instance, in the case of the QCD dipole operators the m�
mass scale must be interpreted as mQCD� .

4.3 Flavor Symmetric Scenarios

The comparison of the anarchic flavor scenario with the experimental data high-
lighted some interesting features. The straightforward extension of the partial
compositeness assumption to all the quark generations automatically helps in
reducing the flavor-violating effects in comparison with generic flavor-violating new
physics at the TeV scale.12 Thus it significantly lowers the suppression scale needed
in flavor breaking operators and alleviates the tension between this scale and the
energy scale of the EWSB dynamics. Although the suppression is quite efficient,
the constraints on many flavor observables are so strong that a residual tension is
still present, pushing the natural scale of the composite dynamics in the 10TeV
range. This bound is particularly problematic since, for many observable, it applies
directly to the mass of the fermionic partners that control the amount of tuning in
the Higgs potential. Partners with a mass above 10TeV imply a minimal amount of
tuning of order 0:2% (see Eq. (3.128)).

Of course, order one corrections to the estimates and accidental cancellations
may be present, so that the 10TeV bound and the related amount of fine-tuning
can be (slightly) relaxed in specific models. Lowering the compositeness scale to
the completely Natural 1TeV level, however, seems not realistic. It is thus natural to
ask if alternative implementations of the flavor structure can be conceived that could
lead to less constrained scenarios. To answer this question it is useful to take a step
back and reconsider the broad features of the anarchic scenario in comparison with
the flavor structure of the SM.

12For instance, the experimental bounds on the �F D 2 transitions in the Kaon system require
a suppression scale ƒ & 105 TeV. The RS-GIM mechanism lowers this scale by four orders of
magnitude (see Table 4.2).
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The fundamental feature characterizing the anarchic scenario is the RS-GIM
mechanism, which implies that new-physics flavor effects are weighted by the
amount of compositeness of the SM quarks. Due to the hierarchies in the ele-
mentary/composite mixings (see Eqs. (4.27)–(4.30)), the amount of suppression in
the flavor-violating observables is roughly equal to the corresponding off-diagonal
elements of the CKM matrix. The suppression is thus comparable to the one present
in MFV scenarios and, in particular, in the SM.

The anarchic scenario, however, differs from the SM in two fundamental aspects,
namely the generation of FCNC’s and the violation of CP. Let us consider these
issues more closely.

In the SM any FCNC can only be generated at loop level. In particular the
couplings of the Z boson and of the Higgs are completely flavor-diagonal. As we
saw in the previous sections, this is not the case in anarchic partial compositeness. In
this scenario the Higgs couplings can mediate flavor-changing transitions, although
in many models these effects can be suppressed due to a partial MFV in the Higgs
sector. The situation is slightly more complicated for the Z couplings. In general the
tree-level Z interactions are not protected and can mediate flavor-changing currents
arising at leading order in the elementary/composite mixings. Some protection can
be present in specific scenarios thanks to the existence of discrete Z2 symmetries
(see Table 4.1). In all the models we considered, however, a full protection is never
achieved and flavor-violation in the Z sector always leads to significant bounds. The
Higgs and Z interactions, however, are not the most dangerous sources of FCNC’s
in the anarchic scenarios. In fact more problematic new-physics effects are due to 4-
fermion contact interactions mediating �F D 2 transitions. In models with VMD,
these operators are due to the presence of heavy vector resonances, which, in the
absence of any flavor symmetry, generate arbitrary 4-point interactions among the
fermionic partners. In the SM, instead, analogous effective interactions are only
generated at loop level and are further suppressed by the GIM mechanism. These
features emerge from the fact that the SM is a weakly-coupled perturbative theory
and from the fact that it automatically obeys the MFV hypothesis, namely that the
only sources of breaking of the flavor symmetry group U.3/qL�U.3/uR�U.3/dR are
the two Yukawa matrices. Both conditions are violated in the anarchic composite
Higgs scenario.

The second main difference with respect to the SM is related to CP violation. In
the SM, again due to MFV, CP is broken only in the presence of three quark families,
otherwise the VCKM matrix could be made real by flavor symmetry rotations.
Therefore CP-violating effect are only possible in the SM if all the three generations
are “active”, i.e. if they circulate in the loops. This implies a huge suppression in the
quark dipole moments, in particular for the first generation quarks that determine the
nucleons EDM’s. In the anarchic composite Higgs case, instead, many additional
flavor-breaking sources are present besides the Yukawa matrices and the flavor
symmetries are not enough to reduce all flavor-violating effects to the CKM matrix.
Moreover the flavor structures contain several new complex phases that can not be
removed and lead to new CP-violating effects. This structure has a direct impact
on the bounds on the composite dynamics. A first consequence is the presence of
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order-one complex phases in the flavor-violating operators. This implies that the
more stringent constraints coming from CP-violating observables apply (see for
instance the constraints from �K in �F D 2 transitions). Moreover, in general the
CP violating phases can not be removed even if only one generation of elementary
quarks is considered. This leads to large contributions to the imaginary coefficients
of the quark dipole operators and, consequently, to the strong constraints from the
neutron EDM discussed in Sect. 4.2.3.

In the view of the shortcomings of the anarchic scenario it is natural to look for
alternative implementations of the flavor structure. The above discussion suggests a
set of “ideal” features that allow a flavor theory to pass the stringent experimental
constraints. First of all it should include a suppression of the flavor-breaking
effects roughly comparable to the one provided by the RS-GIM mechanism or by
MFV. Second, FCNC’s should not be generated at tree-level or, at least, should be
suppressed by some symmetry mechanism or selection rule. Finally, extra sources
of CP violation should be kept under control.

An interesting way to reduce the flavor-violating effects is to assume that a set
of global flavor symmetries is present. As we will see in the following section,
different symmetry patterns can be adopted for both the elementary states and the
composite dynamics. Although the minimal constructions are still based on the
partial compositeness hypothesis, the flavor symmetries seem not compatible with
any natural explanation of the hierarchies in the quark masses and in the CKM
matrix. This partially undermines the original motivation for partial compositeness.

A more radical solution, which is not yet fully explored in the literature (see
[36, 37]) and for this reason will not be described here, is to abandon the partial
compositeness paradigm for the generation of the light quark Yukawa’s. After all,
we saw in Sect. 2.4.1 that the Yukawa couplings could also be generated by bilinear
elementary/composite interactions and that the obstruction to this possibility has to
do with the generation of the heavy quark masses, not with the light ones. Therefore
partial compositeness is the only known viable option for the top (and possibly
bottom) Yukawa generation, but we are not obliged to extend it to the light quarks,
whose Yukawa’s might well be generated by bilinear couplings of the elementary
fermions to composite scalar operators. Making this viable most likely requires
flavor symmetries and a complete explanation of the mass and VCKM hierarchies is
most likely impossible to achieve in this framework, however we encounter the same
shortcomings in the flavor-symmetric partial compositeness scenario. Furthermore
scalar operators with suitable quantum numbers to couple to the elementary fermion
are necessarily present in the composite sector. By ignoring them, as we do in
the partial compositeness scenario, we are effectively assuming that they are not
coupled, or that their scaling dimension is so high that their effects are completely
negligible in the IR. These are not necessarily plausible hypotheses. For this reason
a “mixed” mechanism for Yukawa generation, with partial compositeness for the
third family and bilinear couplings for the others appears a plausible option which
is worth investigating. A similar approach will be taken for the study of lepton flavor
in Sect. 4.4.
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4.3.1 The U.3/3 Models

The first class of models we consider is based on the assumption that the composite
sector is invariant under a global U.3/cs flavor group [8, 38, 39].13 The elemen-
tary/composite mixings are the only sources of breaking of the flavor symmetry
of the composite dynamics and of the U.3/qL � U.3/uR � U.3/dR symmetry of the
elementary sector, thus they encode the whole flavor structure. In order to suppress
the new-physics flavor effects the MFV hypothesis is realized by some ad hoc
assumptions on the structure of the elementary/composite mixings.

One possibility is to assume that the mixings of the qi
L doublets are trivial, while

the mixings of the right-handed singlets are proportional to the SM Yukawas14:

�qL / � ; �0
qL
/ � ;

�uR / yu ; �dR / yd :
(4.125)

This choice has a direct implication for the compositeness of the left-handed
quarks. Due to the flavor symmetries and the conditions in Eq. (4.125), all the left-
handed quark components qi

L share the same amount of compositeness. In order to
reproduce the top quark mass the �qL mixing must be relatively large, �qL & yt, and
the q3L compositeness must be sizable. As a consequence the light quarks of the first
and second generations must also be quite composite. Because of this feature, the
above scenario is usually dubbed “left-handed compositeness”.

When the right-handed mixings are set to zero, namely for vanishing Yukawa
matrices yu;d D 0, the theory has a global U.3/3 flavor symmetry. This acts as
U.3/uR � U.3/dR transformations on the elementary right-handed fields, times one
U.3/qL that rotates simultaneously the composite sector, by the U.3/cs group, and
the elementary left-handed doublets. The right-handed mixings, i.e. the Yukawa
matrices yu;d, break the U.3/3 flavor symmetry down to the baryon number U.1/B.
The MFV hypothesis, in which the Yukawa’s are the only sources of flavor breaking,
is thus realized. This implies in particular that flavor breaking can be entirely
ascribed, after a field redefinition, to the VCKM matrix. In order to verify this we
can consider the singular value decomposition for the right-handed mixings, which
reduces the flavor structure to four unitary rotations. The two “right” rotations can
be removed by a redefinition of the singlets ui

R and di
R. On the other hand, only one

“left” rotation can be removed by a rotation of the left-handed elementary fields
accompanied by a corresponding flavor transformation of the composite sector that
leaves the left mixings unchanged. In this way only one flavor-violating structure
remains, which must coincide with the CKM matrix.

13The first proposals of flavor symmetric composite Higgs scenarios were developed in the extra-
dimensional framework in [40–44].
14This scenario can be easily realized also in the models with a single left-handed mixing with the
choice �0

qL
D �qL / �.
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A similar construction, the so called “right-handed compositeness” can be
realized by exchanging the mixing structure of the left and right quarks:

�qL / yu ; �
0
qL
/ yd ;

�uR / � ; �dR / � :
(4.126)

Obviously this scenario can only be realized if the left-handed qL doublets are mixed
to two or more composite operators. In the scenarios with single mixing the up
and down quark masses as well as the CKM structure can not be accommodated.
An extension of the flavor symmetry of the composite sector is needed in order
to realize MFV in the right-handed compositeness scenario. Two composite sector
flavor symmetries U.3/ucs and U.3/dcs are needed, rather than one. The first group,
U.3/ucs acts on the operators OuR

F that mix with uR and on OqL
F that mix with the qL.

The second group acts on OuR
F and on O0qL

F . Analogously to the models with left-
handed compositeness, the requirement of obtaining the correct top mass forces the
�uR mixings to be large, thus implying a sizable amount of compositeness for all
the right-handed up-type quarks. To a lesser degree this is also true for the down-
type quarks, although in this case the minimal amount of compositeness can be
significantly smaller being determined by the bottom mass.

The MFV structure is helpful to reduce some of the flavor constraints with respect
to the anarchic case, below we will briefly describe the situation, skipping all details,
which can be found in the original literature. The conclusion will be that the extra
flavor suppression of this kind of constructions is not enough to completely remove
the tension with the experiments.

Differently from the anarchic scenarios, the large flavor symmetry of the U.3/3

models allows to keep under control the CP violating effects. In particular extra CP
violation is not present if we assume that the composite sector preserves CP. In this
case the strong bounds from the neutron EDM disappear.

The flavor symmetry also ensures some cancellation in the FCNC’s. In the
left compositeness scenarios the tree-level FCNC’s are completely absent [8, 39],
thus removing the bounds from �F D 2 transitions. This is not the case in
the right-compositeness models, in which minimally-flavor-violating FCNC’s are
generated at tree level [45, 46]. Under the VMD hypothesis, however, the 4-fermion
interactions mediating�F D 2 transitions contain only the left-handed quarks. The
relevant bounds are thus the ones coming from the Q1 operators, which still push
the compositeness scale in the multi-TeV range (m� & 4TeV).

The large amount of compositeness of the light quarks leads to some additional
tension with the experiments [8]. An important effect is the modification of the
gauge boson couplings that affects the EW precision measurements. Significant
constraints on the left-compositeness scenarios come form the measurement of the
partial width of the Z boson into hadrons and from the violation of the quark-
lepton universality. These observables imply a lower bound on the compositeness
scale of order m� & 6

p
g� TeV. Stringent bounds also come from the angular

distribution of dijet events at the LHC, which is sensitive to the compositeness of
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the first-generation quarks. The corresponding bound is of the order m� & 4TeV
and applies to the left-compositeness models as well as the right-compositeness
ones [47].

Another consequence of the large compositeness of the light quarks is an
increased direct production cross section for the fermionic partners. The current
LHC bounds already push the mass scale of these resonances to the few-TeV
range [48, 49]. Additional bounds can be derived for the vector resonances, which
can be easily produced from the light quarks. Significant bounds can be derived for
the heavy gluons whose present exclusion, in specific scenarios, can reach the 3TeV
scale [8, 49].

Finally it is important to notice that in generic strongly coupled theories we
expect resonances associated to all the global symmetries. In particular in the left
and right compositeness models we expect extra vector resonances corresponding
to the global flavor symmetry U.3/ and U.3/2 respectively. These resonances are
expected to have a mass roughly comparable to the one of the usual EW or QCD
resonances and could be an additional target for collider experiments.

4.3.2 The U.2/3 Models

From the above discussion it emerges that the U.3/ models can offer a partial
improvement with respect to the anarchic scenarios. The improvement is however
not enough to bring down the composite dynamics scale around 1TeV. Some
of the most problematic aspects of the flavor symmetric models come from the
fact that the U.3/ invariance necessarily connects the amount of compositeness of
the light fermions with the one of the third-generation quarks. This creates a big
tension with the high-precision EW measurements involving the light quarks and
significantly enhances the direct collider bounds on the production of resonances
(either fermionic partners or heavy gauge fields).

A possible way to modify the above scenarios is to reduce the flavor symmetry
by excluding the heavy quarks. In other words, we can assume only a U.2/qL �
U.2/uR � U.2/dR symmetry, under which the first two generation quarks transform
as doublets, while the third generation fields are singlets [8, 45, 46]. Compared to
the U.3/3 models, a larger number of free parameters is present, however the flavor
symmetry can be broken more weakly since the top Yukawa is now invariant under
U.2/3. In complete analogy to the previous scenarios, models with left or with right
compositeness can be constructed. In the left-compositeness case the composite
dynamics is invariant under a U.2/ flavor symmetry, while right compositeness
requires an extended U.2/2 symmetry.15

15Mixed scenarios considering a reduced U.2/ flavor symmetry only for one quark chirality and
full U.3/ symmetry for the others can also be constructed [46].
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The full MFV structure can not be reproduced in U.2/3 models, however a
reduced version involving the first two generations is still at work, suppressing flavor
violation for processes involving the light quarks. FCNC’s are generically present
both for left and for right compositeness. The largest contributions involve only
the left-handed quarks, thus the strongest constraints come from the Q1 operators,
while the bounds from Q4 are not significant [8]. Although the constraints on
m� are roughly similar to the ones in the right-compositeness U.3/3 models, the
additional freedom in the choice of parameters allows a reduction of the bounds to
the m� � 1TeV scale.

Flavor changing interactions involving the Z boson are present at tree-level in the
models with left compositeness, while they are absent in the right-compositeness
case. The relevant effects only involve the left-handed currents and the correspond-
ing bounds can be lowered to the 1TeV scale with the same choice of parameters
that reduces the tension from�F D 2 transitions.

If the composite sector preserves CP, the corrections to the neutron EDM are only
generated at higher order in the parameters that break the U.2/3 symmetry and are
well below the current experimental bounds.

Finally, the constraints from direct production of composite resonances and the
ones from the EW precision measurements on the light quarks become irrelevant
due to the small amount of compositeness of these states. The only bounds of this
type come from the dynamics related to the third generation quarks, in particular
from the direct searches for top partners, from the oblique parameters and from
the corrections to the gauge couplings involving the b quark. These constraints are
clearly common to all scenarios based on partial compositeness and are comparable
to the corresponding ones in the anarchic models. Given their relevance for generic
composite Higgs scenarios we discuss them in dedicated chapters, namely Chaps. 6
and 7.

4.4 The Lepton Sector

So far we focused our discussion on the flavor structure of the quark sector. The
construction of a complete model, however, also requires a full description of the
lepton fields. We will show in this section how a minimal implementation of the
lepton sector can be obtained as a straightforward generalization of the anarchic
scenario [16, 50–52]. As we will see, this minimal scenario is far from being
satisfactory since it suffers from extremely strong experimental constraints. It is
however a useful toy example to discuss the general features of the lepton sector
and present the most important experimental constraints. More refined models that
improve the compatibility with the experiments through the introduction of flavor
symmetries can be constructed in analogy to what we discussed in Sect. 4.3 for the
quark sector or by advocating the presence of discrete symmetries. For brevity, we
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will not enter into the details of such constructions and we refer the interested reader
to the original literature [53–57].

The lepton sector presents two peculiar aspects that make it quite different
from the quark sector. The first peculiarity is related to the neutrino masses which
are much smaller than the masses of the charged leptons. This property makes
it plausible that the neutrino masses come from a different source, thus allowing
more freedom in the flavor structure. An interesting possibility is to abandon the
usual partial compositeness structure, and generate the neutrino masses through a
technicolor-like construction. We will discuss this scenario, as well as the standard
partial-compositeness one, in the following.

The second peculiar aspect of the lepton sector is the fact that the lepton mixing
matrix VPMNS, contrary to the VCKM matrix, seems to have a non-hierarchical
structure. To understand the consequences of this structure it is useful to recall the
expression of the mixing matrix in terms of the chiral rotations that diagonalize the
Yukawa’s:

VPMNS D E
LNL ; (4.127)

where EL and NL refer to the rotation of the left-handed fields in the charged lepton
and neutrino sectors respectively. A non-hierarchical structure for VPMNS generically
occurs whenever NL is anarchic, irrespectively of the charged lepton rotation matrix
EL. To obtain the correct flavor structure it is thus sufficient to generate hierarchical
Yukawa’s for the charged leptons

yi
e � �i

`L
�i

eR
=g� ; (4.128)

and to assume that the rotation matrix NL is non-hierarchical.
As a first scenario we consider the usual partial compositeness structure. In com-

plete analogy to the quark sector we introduce right-handed neutrinos and consider
Dirac neutrino masses. As for the quarks, in order to generate the lepton masses,
the left-handed doublets `i

L should be mixed to one or more composite operators
depending on the SO.5/ quantum numbers. For instance if the composite operators
belong to the fundamental representation at least two mixings are necessary: one
with a 5�1 operator giving mass to the charged leptons and one with a 50 operator
giving mass to the neutrinos. In this scenario we are left with a large freedom in the
choice of the mixings. Apart from the condition in Eq. (4.128), we need to assume
that the left neutrino mixing is non hierarchical, �0i

`L
=�

0j
`L
� 1. As we explained in

Sect. 4.1, this condition ensures that the NL matrix is anarchic.
If the `i

L fields are mixed with only one composite operator the overall picture
changes. In this case, in order to obtain a non-hierarchical NL, we need to assume
�i
`L
=�

j
`L
� 1. This condition fixes the ratios between the �i

eR
mixings, which must

be chosen to reproduce the charged lepton masses, �i
eR
=�j

eR
� mi

e=mj
e for i < j.

As we mentioned before, an alternative scenario can be advocated for the
generation of the neutrino masses. Instead of coming from the usual partial
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compositeness mixing, the neutrino masses could arise from couplings involving
a bilinear of the elementary fields. This can be naturally realized if the neutrinos are
Majorana. In this case the leading operator responsible for generating neutrino mass
terms is of the form

y	ij.`
i
L/

c`
j
LO : (4.129)

In the above equation y	ij is an anarchic matrix and O is a composite operator trans-
forming as an SU.2/L triplet and with unit hypercharge. If the scaling dimension of
the composite operator is larger than 2 the Renormalization-Group running naturally
generates a suppression of the neutrino masses.

A similar construction can also be realized if the neutrinos are Dirac by assuming
that the mixing of the right-handed fields �	R are negligibly small. In this case
the dominant contribution to the neutrino masses comes from higher dimensional

operators involving the `
i
L	

j
R bilinear at the UV scale.

4.4.1 Constraints

The minimal implementations of the lepton sector we described before are in deep
trouble when compared with the stringent experimental data. The most problematic
observables are the electron EDM and the lepton flavor violating decay � ! e� .
As we will discuss in the following these observables lead to bounds on the
compositeness scale that are nearly one order of magnitude stronger than the ones
we found in the quark sector.

The Electron EDM

We start by considering the electron EDM, which is induced by the dipole operator

Oee� D Cee�
eme

16�2
e��	F�	�

5e : (4.130)

If Oee� is induced a tree level, its contribution to the electron EDM can be estimated
as

de D eme

8�2
Im Cee� � 2me e

m2�
: (4.131)

The current experimental bound is given by [29]

jdej < 0:87 � 10�28e cm at 90% C.L. (4.132)
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This translates into the stringent constraint

m� & 480TeV : (4.133)

Even if we assume that the dipole operator is generated only at loop level, the bound
on the composite dynamics remains quite strong, f & 38TeV.

The corrections to the muon EDM can be analyzed in a similar way. The new-
physics contributions, however, are way below the present bounds and do not impose
any significant constraint.

Lepton Flavor Violation

The second process that leads to a strong constraint on the minimal implementations
of the lepton sectors is the �! e� decay. The effective Lagrangian mediating this
process can be written as [16]

L�!e� D m�eF�	

�
�L�

�	eR

ƒ2
L

C �R�
�	eL

ƒ2
L

�
: (4.134)

From this expression one can derive the branching ratio for the flavor-violating
decay

BR.�! e�/ D 96�2e2
 ˇ̌
ˇ̌ v
ƒL

ˇ̌
ˇ̌4 C

ˇ̌
ˇ̌ v
ƒR

ˇ̌
ˇ̌4
!
: (4.135)

By imposing the current experimental bound BR.�! e�/ < 5:7� 10�13 [29], one
findsƒL;R & 900TeV.

The coefficients of the effective operators can be estimated as

m�

ƒ2
L

� p2
p

mem�

m2�

 
�1`L

�2`L

r
m�

me

!�1
; (4.136)

m�

ƒ2
R

� p2
p

mem�

m2�

 
�1`L

�2`L

r
m�

me

!
: (4.137)

The above expressions have been written in such a way to emphasize that, in order
to minimize the constraints, the optimal choice for the �i

`L
parameters is

�1`L

�2`L

�
r

me

m�

: (4.138)
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With this choice we find that the bound on m� is given by

m� & 300TeV : (4.139)

Also in this case the bound remains quite strong even if the dipole operators are not
generated at tree level ( f & 25TeV).

Other minor constraints can be derived from the muon conversion inside nuclei
and from the � ! 3e decay [16]. These processes are mediated by the penguin
operators that lead to flavor-violating Z interactions.

References

1. K. Agashe, G. Perez, A. Soni, Flavor structure of warped extra dimension models. Phys. Rev.
D71, 016002 (2005). arXiv:hep-ph/0408134 [hep-ph]

2. T. Gherghetta, A. Pomarol, Bulk fields and supersymmetry in a slice of AdS. Nucl. Phys.
B586, 141–162 (2000). arXiv:hep-ph/0003129 [hep-ph]

3. Y. Grossman, M. Neubert, Neutrino masses and mixings in nonfactorizable geometry. Phys.
Lett. B474, 361–371 (2000). arXiv:hep-ph/9912408 [hep-ph]

4. S.J. Huber, Flavor violation and warped geometry. Nucl. Phys. B666, 269–288 (2003).
arXiv:hep-ph/0303183 [hep-ph]

5. S.J. Huber, Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model.
Phys. Lett. B498, 256–262 (2001) arXiv:hep-ph/0010195 [hep-ph]

6. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion
masses. Nucl. Phys. B365, 259–278 (1991)

7. C. Csaki, A. Falkowski, A. Weiler, A simple flavor protection for RS. Phys. Rev. D80, 016001
(2009). arXiv:0806.3757 [hep-ph]

8. R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub, A. Tesi, A 125 GeV composite Higgs boson
versus flavour and electroweak precision tests. JHEP 1305, 069 (2013). arXiv:1211.5085
[hep-ph]

9. K. Agashe, R. Contino, Composite Higgs-mediated FCNC. Phys. Rev. D80, 075016 (2009).
arXiv:0906.1542 [hep-ph]

10. G. D’Ambrosio, G. Giudice, G. Isidori, A. Strumia, Minimal flavor violation: an effective field
theory approach. Nucl. Phys. B645, 155–187 (2002). arXiv:hep-ph/0207036 [hep-ph]

11. W. Altmannshofer, P. Paradisi, D.M. Straub, Model-independent constraints on new physics in
b ! s transitions. JHEP 1204, 008 (2012). arXiv:1111.1257 [hep-ph]

12. A.J. Buras, Weak Hamiltonian, CP violation and rare decays (1998). arXiv:hep-ph/9806471
[hep-ph]

13. W. Altmannshofer, D.M. Straub, Cornering new physics in b ! s transitions. JHEP 1208, 121
(2012). arXiv:1206.0273 [hep-ph]

14. K. Agashe, A. Azatov, L. Zhu, Flavor violation tests of warped/composite SM in the two-site
approach. Phys. Rev. D79, 056006 (2009). arXiv:0810.1016 [hep-ph]

15. O. Gedalia, G. Isidori, G. Perez, Combining direct & indirect kaon CP violation to constrain
the warped KK scale. Phys. Lett. B682, 200–206 (2009). arXiv:0905.3264 [hep-ph]

16. B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi et al., On partial
compositeness and the CP asymmetry in charm decays. Nucl. Phys. B867, 394–428 (2013).
arXiv:1205.5803 [hep-ph]

17. N. Vignaroli, �F D 1 constraints on composite Higgs models with LR parity. Phys. Rev.
D86, 115011 (2012). arXiv:1204.0478 [hep-ph]

http://dx.doi.org/10.1103/PhysRevD.71.016002
http://arxiv.org/abs/hep-ph/0408134
http://dx.doi.org/10.1016/S0550-3213(00)00392-8
http://arxiv.org/abs/hep-ph/0003129
http://dx.doi.org/10.1016/S0370-2693(00)00054-X
http://arxiv.org/abs/hep-ph/9912408
http://dx.doi.org/10.1016/S0550-3213(03)00502-9
http://arxiv.org/abs/hep-ph/0303183
http://dx.doi.org/10.1016/S0370-2693(00)01399-X
http://arxiv.org/abs/hep-ph/0010195
http://dx.doi.org/10.1016/S0550-3213(05)80021-5
http://dx.doi.org/10.1103/PhysRevD.80.016001
http://arxiv.org/abs/0806.3757
http://dx.doi.org/10.1007/JHEP05(2013)069
http://arxiv.org/abs/1211.5085
http://dx.doi.org/10.1103/PhysRevD.80.075016
http://arxiv.org/abs/0906.1542
http://dx.doi.org/10.1016/S0550-3213(02)00836-2
http://arxiv.org/abs/hep-ph/0207036
http://dx.doi.org/10.1007/JHEP04(2012)008
http://arxiv.org/abs/1111.1257
http://arxiv.org/abs/hep-ph/9806471
http://dx.doi.org/10.1007/JHEP08(2012)121
http://arxiv.org/abs/1206.0273
http://dx.doi.org/10.1103/PhysRevD.79.056006
http://arxiv.org/abs/0810.1016
http://dx.doi.org/10.1016/j.physletb.2009.10.097
http://arxiv.org/abs/0905.3264
http://dx.doi.org/10.1016/j.nuclphysb.2012.10.012
http://arxiv.org/abs/1205.5803
http://dx.doi.org/10.1103/PhysRevD.86.115011
http://arxiv.org/abs/1204.0478


180 4 Flavor

18. M. König, M. Neubert, D.M. Straub, Dipole operator constraints on composite Higgs models.
Eur. Phys. J. C74(7), 2945 (2014). arXiv:1403.2756 [hep-ph]

19. G. Isidori, J.F. Kamenik, Z. Ligeti, G. Perez, Implications of the LHCb evidence for charm CP
violation. Phys. Lett. B711, 46–51 (2012). arXiv:1111.4987 [hep-ph]

20. K. Agashe, R. Contino, L. Da Rold, A. Pomarol, A custodial symmetry for Zb anti-b. Phys.
Lett. B641, 62–66 (2006). arXiv:hep-ph/0605341 [hep-ph]

21. A.J. Buras, C. Grojean, S. Pokorski, R. Ziegler, FCNC effects in a minimal theory of fermion
masses. JHEP 1108, 028 (2011). arXiv:1105.3725 [hep-ph]

22. M. Bauer, S. Casagrande, U. Haisch, M. Neubert, Flavor physics in the Randall-Sundrum
model: II. Tree-level weak-interaction processes. JHEP 1009, 017 (2010). arXiv:0912.1625
[hep-ph]

23. G. Altarelli, R. Barbieri, F. Caravaglios, Nonstandard analysis of electroweak precision data.
Nucl. Phys. B405, 3–23 (1993)

24. G. Cacciapaglia, C. Csaki, G. Marandella, A. Strumia, The minimal set of electroweak
precision parameters. Phys. Rev. D74, 033011 (2006). arXiv:hep-ph/0604111 [hep-ph]

25. C. Csaki, A. Falkowski, A. Weiler, The flavor of the composite pseudo-Goldstone Higgs. JHEP
0809, 008 (2008). arXiv:0804.1954 [hep-ph]

26. G. Isidori, Flavor physics and CP violation (2013). arXiv:1302.0661 [hep-ph]
27. UTfit Collaboration, M. Bona et al., Model-independent constraints on �F D 2 operators and

the scale of new physics. JHEP 0803, 049 (2008). arXiv:0707.0636 [hep-ph]
28. M. Pospelov, A. Ritz, Neutron EDM from electric and chromoelectric dipole moments of

quarks. Phys. Rev. D63, 073015 (2001). arXiv:hep-ph/0010037 [hep-ph]
29. Particle Data Group Collaboration, K. Olive et al., Review of particle physics. Chin. Phys. C38,

090001 (2014)
30. E. Braaten, C.-S. Li, T.-C. Yuan, The evolution of Weinberg’s gluonic CP violation operator.

Phys. Rev. Lett. 64, 1709 (1990)
31. D. Chang, W.-Y. Keung, C. Li, T. Yuan, QCD corrections to CP violation from color electric

dipole moment of b quark. Phys. Lett. B241, 589 (1990)
32. J.F. Kamenik, M. Papucci, A. Weiler, Constraining the dipole moments of the top quark. Phys.

Rev. D85(3), 071501 (2012). arXiv:1107.3143 [hep-ph]
33. F. Sala, A bound on the charm chromo-EDM and its implications. JHEP 1403, 061 (2014).

arXiv:1312.2589 [hep-ph]
34. O. Matsedonskyi, G. Panico, A. Wulzer, Light top partners for a light composite Higgs. JHEP

1301, 164 (2013). arXiv:1204.6333 [hep-ph]
35. G. Panico, M. Redi, A. Tesi, A. Wulzer, On the tuning and the mass of the composite Higgs.

JHEP 1303, 051 (2013). arXiv:1210.7114 [hep-ph]
36. G. Cacciapaglia, H. Cai, T. Flacke, S.J. Lee, A. Parolini et al., Anarchic Yukawas and top

partial compositeness: the flavour of a successful marriage. arXiv:1501.03818 [hep-ph]
37. O. Matsedonskyi, On flavour and naturalness of composite Higgs models. JHEP 1502, 154

(2015). arXiv:1411.4638 [hep-ph]
38. R. Barbieri, G. Isidori, D. Pappadopulo, Composite fermions in electroweak symmetry

breaking. JHEP 0902, 029 (2009). arXiv:0811.2888 [hep-ph]
39. M. Redi, A. Weiler, Flavor and CP invariant composite Higgs models. JHEP 1111, 108 (2011).

arXiv:1106.6357 [hep-ph]
40. G. Cacciapaglia, C. Csaki, J. Galloway, G. Marandella, J. Terning et al., A GIM mechanism

from extra dimensions. JHEP 0804, 006 (2008). arXiv:0709.1714 [hep-ph]
41. C. Delaunay, O. Gedalia, S.J. Lee, G. Perez, E. Ponton, Ultra visible warped model from flavor

triviality and improved naturalness. Phys. Rev. D83, 115003 (2011). arXiv:1007.0243 [hep-ph]
42. C. Delaunay, O. Gedalia, S.J. Lee, G. Perez, E. Ponton, Extraordinary phenomenology from

warped flavor triviality. Phys. Lett. B703, 486–490 (2011). arXiv:1101.2902 [hep-ph]
43. R. Rattazzi, A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum

model. JHEP 0104, 021 (2001). arXiv:hep-th/0012248 [hep-th]
44. J. Santiago, Minimal flavor protection: a new flavor paradigm in warped models. JHEP 0812,

046 (2008). arXiv:0806.1230 [hep-ph]

http://dx.doi.org/10.1140/epjc/s10052-014-2945-9
http://arxiv.org/abs/1403.2756
http://dx.doi.org/10.1016/j.physletb.2012.03.046
http://arxiv.org/abs/1111.4987
http://dx.doi.org/10.1016/j.physletb.2006.08.005
http://arxiv.org/abs/hep-ph/0605341
http://dx.doi.org/10.1007/JHEP08(2011)028
http://arxiv.org/abs/1105.3725
http://dx.doi.org/10.1007/JHEP09(2010)017
http://arxiv.org/abs/0912.1625
http://dx.doi.org/10.1016/0550-3213(93)90424-N
http://dx.doi.org/10.1103/PhysRevD.74.033011
http://arxiv.org/abs/hep-ph/0604111
http://dx.doi.org/10.1088/1126-6708/2008/09/008
http://arxiv.org/abs/0804.1954
http://arxiv.org/abs/1302.0661
http://dx.doi.org/10.1088/1126-6708/2008/03/049
http://arxiv.org/abs/0707.0636
http://dx.doi.org/10.1103/PhysRevD.63.073015
http://arxiv.org/abs/hep-ph/0010037
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/PhysRevLett.64.1709
http://dx.doi.org/10.1016/0370-2693(90)91875-C
http://dx.doi.org/10.1103/PhysRevD.88.039903, 10.1103/PhysRevD.85.071501
http://arxiv.org/abs/1107.3143
http://dx.doi.org/10.1007/JHEP03(2014)061
http://arxiv.org/abs/1312.2589
http://dx.doi.org/10.1007/JHEP01(2013)164
http://arxiv.org/abs/1204.6333
http://dx.doi.org/10.1007/JHEP03(2013)051
http://arxiv.org/abs/1210.7114
http://arxiv.org/abs/1501.03818
http://dx.doi.org/10.1007/JHEP02(2015)154
http://arxiv.org/abs/1411.4638
http://dx.doi.org/10.1088/1126-6708/2009/02/029
http://arxiv.org/abs/0811.2888
http://dx.doi.org/10.1007/JHEP11(2011)108
http://arxiv.org/abs/1106.6357
http://dx.doi.org/10.1088/1126-6708/2008/04/006
http://arxiv.org/abs/0709.1714
http://dx.doi.org/10.1103/PhysRevD.83.115003
http://arxiv.org/abs/1007.0243
http://dx.doi.org/10.1016/j.physletb.2011.08.031
http://arxiv.org/abs/1101.2902
http://dx.doi.org/10.1088/1126-6708/2001/04/021
http://arxiv.org/abs/hep-th/0012248
http://dx.doi.org/10.1088/1126-6708/2008/12/046
http://arxiv.org/abs/0806.1230


References 181

45. R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub, Flavour physics from an approximate U.2/3

symmetry. JHEP 1207, 181 (2012). arXiv:1203.4218 [hep-ph]
46. M. Redi, Composite MFV and beyond. Eur. Phys. J. C72, 2030 (2012). arXiv:1203.4220

[hep-ph]
47. O. Domenech, A. Pomarol, J. Serra, Probing the SM with Dijets at the LHC. Phys. Rev. D85,

074030 (2012). arXiv:1201.6510 [hep-ph]
48. C. Delaunay, T. Flacke, J. Gonzalez-Fraile, S.J. Lee, G. Panico et al., Light non-degenerate

composite partners at the LHC. JHEP 1402, 055 (2014). arXiv:1311.2072 [hep-ph]
49. M. Redi, V. Sanz, M. de Vries, A. Weiler, Strong signatures of right-handed compositeness.

JHEP 1308, 008 (2013). arXiv:1305.3818
50. K. Agashe, Relaxing constraints from lepton flavor violation in 5D flavorful theories. Phys.

Rev. D80, 115020 (2009). arXiv:0902.2400 [hep-ph]
51. K. Agashe, A.E. Blechman, F. Petriello, Probing the Randall-Sundrum geometric origin of

flavor with lepton flavor violation. Phys. Rev. D74, 053011 (2006). arXiv:hep-ph/0606021
[hep-ph]

52. C. Csaki, Y. Grossman, P. Tanedo, Y. Tsai, Warped penguin diagrams. Phys. Rev. D83, 073002
(2011). arXiv:1004.2037 [hep-ph]

53. C. Csaki, C. Delaunay, C. Grojean, Y. Grossman, A model of lepton masses from a warped
extra dimension. JHEP 0810, 055 (2008). arXiv:0806.0356 [hep-ph]

54. F. del Aguila, A. Carmona, J. Santiago, Neutrino masses from an A4 symmetry in holographic
composite Higgs models. JHEP 1008, 127 (2010). arXiv:1001.5151 [hep-ph]

55. C. Hagedorn, M. Serone, Leptons in holographic composite Higgs models with non-Abelian
discrete symmetries. JHEP 1110, 083 (2011). arXiv:1106.4021 [hep-ph]

56. C. Hagedorn, M. Serone, General lepton mixing in holographic composite Higgs models. JHEP
1202, 077 (2012). arXiv:1110.4612 [hep-ph]

57. M. Redi, Leptons in composite MFV. JHEP 1309, 060 (2013). arXiv:1306.1525 [hep-ph]

http://dx.doi.org/10.1007/JHEP07(2012)181
http://arxiv.org/abs/1203.4218
http://dx.doi.org/10.1140/epjc/s10052-012-2030-1
http://arxiv.org/abs/1203.4220
http://dx.doi.org/10.1103/PhysRevD.85.074030
http://arxiv.org/abs/1201.6510
http://dx.doi.org/10.1007/JHEP02(2014)055
http://arxiv.org/abs/1311.2072
http://dx.doi.org/10.1007/JHEP08(2013)008
http://arxiv.org/abs/1305.3818
http://dx.doi.org/10.1103/PhysRevD.80.115020
http://arxiv.org/abs/0902.2400
http://dx.doi.org/10.1103/PhysRevD.74.053011
http://arxiv.org/abs/hep-ph/0606021
http://dx.doi.org/10.1103/PhysRevD.83.073002
http://arxiv.org/abs/1004.2037
http://dx.doi.org/10.1088/1126-6708/2008/10/055
http://arxiv.org/abs/0806.0356
http://dx.doi.org/10.1007/JHEP08(2010)127
http://arxiv.org/abs/1001.5151
http://dx.doi.org/10.1007/JHEP10(2011)083
http://arxiv.org/abs/1106.4021
http://dx.doi.org/10.1007/JHEP02(2012)077
http://arxiv.org/abs/1110.4612
http://arxiv.org/abs/1306.1525


Chapter 5
Phenomenological Models

In the previous chapters we focused on the broad qualitative features of the compos-
ite Higgs scenarios that follow directly from the Nambu—Goldstone boson nature
of the Higgs and from partial fermion compositeness. As we discussed at length,
the Goldstone structure determines many important aspects of the elementary and
composite dynamics and, when supplemented by a power-counting rule, can be
exploited to obtain a semi-quantitative understanding of the new-physics effects.
The full generality of this approach is at the same time the source of its advantages
and of its main limitations. Most of the results we derived are indeed valid only as
order of magnitude estimates and important numerical corrections could be present
in explicit models. Moreover, so far we mainly focused on the dynamics of the
Standard Model (SM) fields, but we did not consider in details the properties of
the composite resonances that unavoidably arise from the composite sector and
constitute one of the most distinctive features of the composite Higgs scenarios.

In this chapter we will change perspective and we will show how more complete
descriptions of the composite Higgs theories can be constructed. The main aim of
our constructions will not be to make progresses on the microscopic origin of the
composite Higgs scenario, but instead to obtain some phenomenological model in
which the relevant physical observables, such as the Higgs potential and the Electro-
Weak (EW) parameters, can be reliably predicted. We will see that, as a byproduct
of the calculability requirement, a parametrization of the dynamics of the composite
resonances is also automatically introduced.

The construction of explicit models is important for several reasons. First of all,
explicit realizations of the composite scenarios allow to check in details the validity
of the model-independent results derived in the previous chapters. In particular
they are useful to understand up to which extent the general estimates can be
modified and the various constraints coming from the experimental data can be
relaxed or tightened. Specific implementations of the composite Higgs idea, indeed,
often predict several correlations among the physical observables or display some
accidental cancellations. All these effects are very hard to be guessed in a fully
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184 5 Phenomenological Models

model-independent approach. For this reason explicit models can be used to get a
more reliable determination of the impact of the experimental constraints on the
composite Higgs scenario (these topics will be the subjects of Chaps. 6 and 7).

It is also important to stress that the explicit models also have a historical and
practical relevance. In fact, the first holographic implementations of the composite
Higgs scenarios [1, 2] provided a fundamental proof that this kind of framework can
be used to achieve realistic models of EW Symmetry Breaking (EWSB). Explicit
constructions, moreover, have often been the playground for the discovery of new
features of the composite scenarios, which then have been confirmed and more fully
analyzed in a model-independent way.

In order to build explicit realizations of the composite Higgs scenarios different
alternative constructions can be used. One possibility is to rely on the holographic
models formulated as gauge theories in five space-time dimensions. These models
provide calculable implementations of the composite Higgs idea and, at the same
time, include a full description of the composite sector resonances. This latter
feature is however also at the origin of the main drawback of the holographic
approach, namely the fact that extracting predictions for the physical observables
is usually technically challenging. This is particularly so if we are interested in the
collider phenomenology of the composite resonances. The extra-dimensional mod-
els, indeed, necessarily include infinite towers of composite states with increasing
mass and formally describe the dynamics of each of them. Obviously in a collider
experiment only a few light resonances are accessible, thus retaining the heavier
states is an unnecessary complication. Furthermore only the light resonances are
well-described by the theory, the heavy states are only formally present since their
mass goes above the cutoff. On top of these reasons, a full description of the
holographic models requires the introduction of many technical tools and would
drive us too far from the path we followed in the previous chapters.1

In the following we will thus choose a different approach and we will focus
on a class of explicit implementations of the composite Higgs scenario based on
fully four-dimensional constructions, the so called “multi-site” models [12, 13]. This
approach is inspired by the holographic models and by the idea of dimensional
deconstruction [14, 15], which consists in discretizing the extra space coordinate by
replacing it with a one-dimensional lattice with a finite number of points or “sites”.
Each site is associated to a set of degrees of freedom that roughly correspond to
one level of Kaluza-Klein (KK) states. In this way the multi-site models provide a
simplified version of the holographic theories in which only few KK levels, i.e. a
limited set of composite resonances, are included.2

1Good reviews explaining the extra-dimensional implementations of the composite Higgs idea can
be found in [3–6]. The holographic correspondence linking these scenarios to the four-dimensional
picture has been discussed in [5, 7–11].
2It is important to stress that the deconstructed models are deeply different from a naive truncation
of the KK tower (for an effective model based on this approach see [16]). A naive truncation,
indeed, implies a breaking of the symmetries that protect the Higgs dynamics in the holographic
models, thus not allowing to implement calculability in the effective model.
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From the technical point of view, the construction of these models does not
require any additional tool since it relies only on the non-linear �-model structure
and on the CCWZ formalism introduced in Chap. 2. The detailed structure of the
models is dictated by the requirement of calculability, which is implemented via a
“collective breaking” mechanism. As we will see, this mechanism has its roots in
the holographic theories and naturally blends with the multi-site structure.

5.1 Multi-site Models: Collective Breaking

In order to introduce the phenomenological multi-site models we proceed in a
constructive manner, following [13]. The starting point is the simplest and most
general description of the composite Higgs dynamics, the non linear �-model. The
additional ingredients needed to include the dynamics of the composite resonances
and to ensure the calculability of the Higgs potential are then progressively
introduced. This leads to a simpler exposition, which allows to emphasize the key
assumptions and gradually describe the required technical tools.

5.1.1 The Non-linear � -Model

For definiteness we focus on the non-linear �-model corresponding to the
SO.5/=SO.4/ coset, which constitutes the “minimal” implementation of a
composite Higgs. This model only contains the pseudo Nambu—Goldstone Boson
(pNGB) Higgs and the SM gauge fields, whereas the composite sector resonances
are absent. The general structure of the non-linear �-model has already been
discussed in Chap. 2 and we rewrite here only the expressions relevant for the
present discussion.

The operators appearing in the Lagrangian can be written in terms of the
Goldstone matrix U defined as

UŒ…� D exp

 
i

p
2

f
…i OTi

!
; (5.1)

where …i are the four NGB fields corresponding to the components of the usual
Higgs doublet and transform as a 4 of SO.4/. We denote collectively by TA D
fTa; OTig the SO.5/ generators in the fundamental representation, corresponding to
the generators of the unbroken SO.4/ subgroup (Ta with a D 1; : : : ; 6) and to the
generators of the SO.5/=SO.4/ coset ( OTi with i D 1; : : : ; 4). For all the generators
we choose the normalization TrŒTATB� D ıAB. The explicit form of the generators
is reported in Eq. (2.25).
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The leading operators in the Lagrangian appear at the two-derivatives order and
read

L� D f 2

4
di
�d�i ; (5.2)

where the d-symbol is defined, as in Eq. (2.69), as the projection on the broken
generators of the Maurer–Cartan form, namely

di
� D i Tr

h
.UTD�U/  OTi

i
: (5.3)

The covariant derivative of the Goldstone matrix is defined as

D�U D @�U � iA�U ; with A� D gW˛T˛L C g0B�T3R ; (5.4)

and gives rise to the interaction of the NGB Higgs with the elementary gauge
fields W˛

� (˛ D 1; 2; 3) and B� corresponding to the SU.2/L � U.1/Y SM gauge
group embedded in SO.4/.3 In the above formula g and g0 denote the couplings
of the SU.2/L and U.1/Y gauge subgroups. The T˛L;R generators correspond to the
SO.4/ generators written in a basis that shows explicitly the equivalence SO.4/ '
SU.2/L�SU.2/R. To complete the leading order Lagrangian, canonical kinetic terms
for the elementary gauge fields must be introduced as well

Lg D �1
4

Tr
�
W�	W�	

 � 1
4

B�	B
�	 ; (5.5)

where we defined W�	 D @�W	 � @	W� � igŒW�;W	� with W� D W˛
�T˛L .

In the previous chapters we regarded the non-linear �-model Lagrangian,
L0 D L� C Lg, as the leading-order low-energy description of the composite
Higgs dynamics, valid below a physical cutoff that is provided by the composite
resonances scale m� D g�f . We also saw how to estimate, by the One-Coupling-
One-Scale power-counting introduced in Chap. 3, the infinite set of higher-order
operators that appear in the effective field theory. Here instead we discuss the
non-linear �-model with a rather different purpose. Namely we want to see which
physical observables are formally predictable within the leading-order version of the
�-model. More precisely, we ask ourselves which observables can be computed by
only employing the leading-order Lagrangian L0, obtaining predictions for them in
terms of its three parameters f , g and g0. The calculability of the Higgs potential will
be our main concern in the present section, however the considerations that follow
will later find other applications in Chap. 7.

3We momentarily neglect the presence of the extra U.1/X charge in the definition of the
hypercharge and we set Y D T3R. The U.1/X subgroup does not play any role until the matter
fermion fields are introduced.
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All tree-level diagrams can be computed, obtaining formally valid predictions.
Obstructions to calculability instead come from loop diagrams, which is where
the non-renormalizable nature of the theory shows up. Order by order in the
loop expansion new divergences will appear, associated to operators that were
not present in L0. Canceling those divergences requires additional counterterms,
which introduce new parameters in the calculation. If the contribution to the latter
parameters is not suppressed and the final result is strongly sensitive to them,
calculability is spoiled. In order to establish whether this occurs or not we need
to count the degree of divergence of the Feynman diagrams with L loops and an
arbitrary set of external legs computed with the leading-order Lagrangian L0. This
is provided by the following formula4

ƒ2f 2
�
ƒ

4�f

�2L �
…

f

�E� �gV

ƒ

�EV
�
@

ƒ

�d �gf

ƒ

�2�
; (5.6)

where ƒ is the hard momentum cutoff of the loop integrals, g and V collectively
denote the g and g0 gauge couplings and the corresponding gauge fields W� and
B�. The degree of divergence associated to a given L-loops diagram, with “E�”
Goldstone and “EV” vector external legs is simply given by the power of ƒ
predicted by the counting rule. A number “d” of external momenta insertions,
which correspond to derivatives in the equivalent effective operators, is also taken
into account. The .gf=ƒ/2� factor, which reduces the degree of divergence (� is
necessarily positive) counts the number of elementary gauge field vertices that are
present in the diagram. For each given observable, the leading divergence is the one
of the diagram with the smallest number of gauge vertices insertions, i.e. with the
smallest �. However because of selection rules, as we will see for instance in the case
of the Higgs potential, there might be an obstruction to reach the absolute minimum
� D 0. One could be obliged to consider diagrams with � � �min > 0, leading to
a reduction of the degree of divergence. This mechanism will be the key ingredient
for the construction of multi-site phenomenological models with a calculable Higgs
potential.

The reader should be careful not to confuse the superficial degree of divergence
counting in Eq. (5.6) with the power-counting estimate we derived in Chap. 3 and in
particular in Eq. (3.23). The two formulas provide answers to two distinct questions,
therefore they are, a priori, completely unrelated. The divergence counting is an
intrinsic property of the effective theory, or better of the leading-order Lagrangian
L0. Indeed only the leading-order parameters appear in Eq. (5.6), the scale ƒ being
just the unphysical and formally infinite loop momentum cutoff. Assumptions on the
UV completion of the effective theory are instead needed for the power-counting
estimate, and indeed the physical cutoff scale m�, or equivalently the typical
resonance coupling g� D m�=f , is present in Eq. (3.23). However, there exists a

4The derivation is not particularly enlightening and thus it will not be reported here. The reader is
referred to [13].
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relation among the two formulas, which emerges if we identify, for a moment, the
loop momentum cutoffƒwith the physical cutoff m�. “Naturalness” considerations,
completely analogous to the ones we made in Sect. 1.2 for our estimate of the low-
energy contributions to the Higgs mass in the SM, suggest that Eq. (5.6) should
provide an approximate lower bound to the size of the effective operator coefficients
that are generated from the UV theory. The idea is, precisely like for the Higgs
mass-term in the SM, that the contribution of virtual quanta below the cutoff, which
is well described by the effective-field-theory loops truncated at the cutoff scale,
should be part of the complete result for the operator coefficient computed in the
UV theory. The operator coefficient being “Natural”, i.e. not resulting from a finely-
tuned cancellation, thus requires it to be larger or at most equal to the one estimated
from the effective field theory loops. It is easy to verify that the power-counting
estimate in Eq. (3.23) indeed obeys this condition, provided the coupling g� stays
below the maximal value of 4� allowed by perturbativity in the UV theory.5 The
lower bound on the operator coefficients is saturated, and the two estimates coincide,
only in the “NDA limit” g� D 4� (and consequently ƒ D m� D 4�f ), i.e. when
we consider a completely strongly-coupled UV completion for the effective field
theory. More precisely, given that the effect of elementary gauge field loops was not
taken into account in Eq. (3.23) the comparison with Eq. (5.6) is only possible for
� D 0. The .gf=ƒ/2� factor reduces to .g2=16�2/� for maximal cutoffƒ D 4�f and
it corresponds to the loop suppression of the operators that are radiatively induced
by the elementary fields, like the ones we encountered in Sect. 3.3.2 in the estimate
of the Higgs effective potential.

We now return to the issue of calculability of the Higgs potential. A naive
usage of Eq. (5.6) would predict a very high degree of divergence, of the quartic
order ƒ4, already at one loop, which is the minimal order at which the Goldstone
boson potential can be generated. However the divergence is reduced because
only the diagrams that are sensitive to the breaking of the Goldstone symmetry
can contribute to the potential. Given that the gauge field couplings are the only
source of such breaking in the Lagrangian, the only relevant diagrams are the ones
that involve internal elementary gauge field lines and thus some insertion of the
elementary gauge field couplings. The minimal number of coupling insertions is
equal to two, therefore the lower bound � � �min D 1 must be considered in
Eq. (5.6). From quartic, the divergence is thus reduced to quadratic because of a
selection rule, namely because of the presence of the Goldstone symmetry and of its
explicit breaking, which is entirely due to the gauge couplings. Even if reduced, the
divergence of the Higgs potential is still present in the non-linear �-model. Since it
emerges at the first order in the loop expansion at which the potential starts being
generated, its presence clearly forbids us to compute the Higgs potential (and in turn
its mass and self-couplings and the EWSB scale) in this theory. The Higgs potential
is determined by a counterterm that cancels the divergence and leaves behind it

5Thinking backwards, this could have been a way to establish the bound g
�

� 4� in the operator
estimate.
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a completely arbitrary finite part, which is merely one new free parameter of the
theory with no connection with the ones that appear in the leading-order Lagrangian.
Therefore it is not a calculable quantity.

The reduction of the divergence from quartic to quadratic is not sufficient to make
the Higgs potential calculable, however it indicates the right direction to design
calculable extensions of the non-linear �-model. For this reason it is worth studying
the cancellation of the leading quartic divergence in a more rigorous and systematic
way by the method of spurions, which will be very useful in the rest of this chapter.
The concept of spurions has already been introduced in Chap. 3 and we refer the
reader to that discussion for more in-depth explanations. Here we only focus on
the minimal ingredients needed for the present analysis. The concept of spurions is
based on the possibility of keeping track of the consequences of a symmetry when it
is broken by a small explicit perturbation. This can be done by formally restoring the
original invariance by promoting the symmetry-breaking couplings to spurions with
definite transformation properties under the symmetry. The only allowed operators
in the effective theory are then the ones that respect the whole original invariance
and can be build from the usual fields and the spurions.

In the non-linear �-model we restore the full SO.5/ invariance by introducing
two spurions G and G0 and rewriting the elementary gauge field in Eq. (5.4) as

A� D G˛W˛
� C G0B� D G˛ATAW˛

� C G0
ATAB� ; (5.7)

where the index A is in the adjoint representation of SO.5/. In this way the covariant
derivative transforms homogeneously under SO.5/. The elementary gauge fields are
now associated to a new “elementary” group SU.2/0L, which is a symmetry of the
gauge Lagrangian in Eq. (5.5), and do not transform under SO.5/. In particular the
three W˛

� belong to the adjoint representation of SU.2/0L, while the B� field and the
Goldstone boson Higgs are invariant. For consistency, the index ˛ of the spurion
forms a triplet under the elementary group. The SM SU.2/L gauge group, under
which both the W fields and the Higgs transform simultaneously, is given by the
vector combination of the elementary SU.2/0L and the SU.2/L subgroup of SO.5/.
One can also notice an additional symmetry, a Z2 parity, that acts by changing the
sign of the spurion G0 and of the B� field.

Clearly Eq. (5.7) is just a rewriting of A�, the physical values of the spurions are
indeed

G˛ D gT˛L ; G0 D g0T3R ; (5.8)

which give back the expression in Eq. (5.4). The physical value of the spurion G
breaks the total SU.2/0L � SO.5/ symmetry down to SO.4/ ' SU.2/L � SU.2/R.
The G0 spurion then produces the further breaking to the SM group. The important
point about the spurions is that before setting them to their physical values they have
well-defined transformation properties under the total symmetry and they must enter
in the allowed operators in symmetry-preserving combinations with the usual fields.
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By using the symmetry we can classify the local operators in terms of the number
of spurions they contain.

Let us now go back to the issue of the calculability of the Higgs potential. We said
that the potential can only be generated due to the breaking of the SO.5/ symmetry
induced by the elementary gauging. In the language of spurions, this means that the
operators contributing to the potential must contain powers of G or G0, which carry
powers of g and g0 and thus lower the degree of divergence from quartic to quadratic.
At the leading order in the gauge couplings it is easy to classify the operators. There
are only two of them contributing to the Higgs potential6

cgf 4
�
UTG˛G˛U

�
55
D 3

4
cgf 4g2 sin2.H=f / (5.9)

and

cg0 f 4
�
UTG0G0U

�
55
D 1

4
cg0 f 4g02 sin2.H=f / ; (5.10)

where we denoted by H the real neutral Higgs component (normalized in such
way that on the EW vacuum hHi ' v D 246GeV). In the notation used
in Eq. (5.1) the physical Higgs corresponds to the fourth component of the …i

multiplet, H D …4. Notice that to construct an SO.5/ invariant operator we took
the .5; 5/ component of the matrices in the parentheses. This can be understood
by recalling the transformation properties of the Goldstone matrix UIJ . The right
index I transforms linearly in the fundamental representation of SO.5/. On the
contrary, the left index J corresponds to a non-linear realization of SO.5/ obtained
through SO.4/ transformations. As we saw in Chap. 2 (compare Eq. (2.49)) this
corresponds to

UŒ…�! U.…0/ D g  UŒ…�  h�1Œ…I g� ; (5.11)

where g denotes a generic SO.5/ transformation, while hŒ…I g� is the element of
SO.4/ corresponding to the non-linear realization of SO.5/. Within our conventions
the SO.4/ generators are embedded in the right-top 4 � 4 block of the fundamental
SO.5/ representation. The fifth component of a vector in the fundamental represen-
tation is thus invariant under SO.4/. It is easy to see that the UTG˛G˛U operator in
Eq. (5.9) transforms with hŒ…I g� on both sides and its .5; 5/ component is SO.5/
invariant. Similar considerations apply to the operator in Eq. (5.10).

6The classification of invariant operators constructed with the gauge spurions was already carried
on in Sect. 3.3.1 with a different and more general technique based on dressed spurions. Two
operators were found for each of the two G and G0 spurions, however only the ones that are even
under the PLR symmetry are generated by radiative corrections and are reported in the equations
that follow. This is because the 2-derivative non-linear � -model Lagrangian is accidentally PLR-
invariant, thus it can not generate odd operators.
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5.1.2 The Two-Site Model

We have seen that the Higgs potential is divergent in the non-linear �-model and
therefore not predictable. The analysis of the degree of divergence, however, led to
an interesting insight on the dynamics responsible of the breaking of the Goldstone
symmetry. In particular it highlighted the fact that the SO.5/ invariance provides
a partial protection of the Higgs dynamics which lowers the degree of divergence
associated to the Higgs potential. This result suggests a natural way to go beyond
the non-linear �-model description and construct a predictive implementation of
the composite Higgs scenario: we must promote the SO.5/ invariance to a larger
set of independent symmetries under which the Higgs behaves like a Goldstone
boson. The Higgs potential is then generated only if all the symmetries are broken
and this reduces its degree of divergence. This kind of mechanism is usually
denoted as collective breaking [17, 18] and has been extensively used in the
context of little Higgs theories (for a review see [19, 20]). As we will see in
the following, an interesting byproduct of the collective-breaking structure is the
automatic connection with the dynamics of the composite sector resonances. The
additional symmetries are indeed a basic ingredient to introduce the composite states
in the effective models.

Before moving to the complete model in which the Higgs potential is fully
calculable, we focus on a simpler implementation of the idea of collective breaking,
the two-site model. Although the two-site model has only a limited predictive power,
it includes most of the ingredients of the complete model and allows an easier
presentation of the new technical aspects.

The starting point of the two-site model is again a non-linear �-model. In
this case, however, it is not based on the usual SO.5/=SO.4/ coset. Instead we
add a second SO.5/ subgroup and consider the chiral group SO.5/L � SO.5/R
spontaneously broken to the vector subgroup SO.5/V . The new coset, SO.5/L �
SO.5/R=SO.5/V , is parametrized by the SO.5/ Goldstone matrix

U Œ…� D exp

 
i

p
2

f
…ATA

!
; (5.12)

which transforms linearly under SO.5/L � SO.5/R

U Œ…�! U Œ…0� D �L U Œ…� �T
R : (5.13)

This structure gives rise to ten Goldstones…A, which transform in the adjoint repre-
sentation of SO.5/V . Under SO.4/ � SO.5/V , four of these, the …i corresponding
to the SO.5/=SO.4/ coset, form a fourplet and are identified with the Higgs field.
The remaining six,…a in the adjoint of SO.4/, will be removed by gauging and will
not appear in the spectrum as physical scalars. Notice that this notation, in which
the Goldstone matrix transforms linearly under the group rather than with the non-
linear h 2 SO.4/ as in Eq. (5.11), is rather different from the one we used until now.
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This formulation of the Goldstone boson theory, alternative to the general CCWZ
one, is only possible for chiral groups broken to the vector combination and it is
related to the latter by

U D
�
U Œ…=2�
0 U
Œ…=2�

	
: (5.14)

With the three-fold purpose of removing the …a scalars, of breaking the extra
SO.5/R invariance and of adding to the model a description of the vector resonances,
we gauge the SO.4/ subgroup of SO.5/R by introducing six gauge fields Q�a

�. Given
that SO.5/R is spontaneously broken, the new gauge bosons become massive and
acquire their longitudinal components by eating the …a Goldstones. The Q� states
are then interpreted as resonances of the composite sector and we assign them a
coupling Qg� of the order of the typical composite sector coupling g�. Their mass
is given by Qm� � Qg�f (see Eq. (5.21)) and is of the order of the typical composite
sector mass m�. For phenomenological reasons Qm� is expected to be of TeV size and
the coupling Qg� is “large” though not maximal, 1 . Qg� < 4� . The latter assumption
is essential to ensure that the dynamics of the vector resonances can be described
perturbatively.

The EW bosons are introduced by gauging the SU.2/L � U.1/Y subgroup of
SO.5/L with the gauge fields W˛

� and B�. The W and B fields are interpreted as
elementary fields. Their couplings g0 and g0

0 almost coincide with the SM g and
g0 couplings and are typically much smaller than Qg� (see Eq. (5.22)). Notice that
the SU.2/L � U.1/Y subgroup of SO.5/L that is gauged by the elementary gauge
fields does not coincide exactly with the SM gauge group. Indeed the SM group
must be unbroken before EWSB, whereas SO.5/L is spontaneously broken to its
vector combination with SO.5/R. The correct identification of the SM group is
thus with the vector combination of the elementary group SU.2/L � U.1/Y inside
SO.5/L and the analogous subgroup inside SO.5/R. This combination belongs to the
SO.5/V symmetry group and is clearly unbroken before the Higgs takes a VEV. A
direct consequence of this construction is the fact that the SM gauge fields do not
correspond just to the elementary fields W and B, but they are a combination of the
latter with the composite vector resonances Q�. This structure clearly corresponds to
the assumption of partial compositeness discussed in Chap. 2.

The structure of the model can also be represented in a schematic way by using
moose-like diagrams as shown in Fig. 5.1. The pictorial representation clarifies the
two-site interpretation of the model. This structure corresponds to a leading order
Lagrangian

L0 D L� C Lg
cs C Lg

el ; (5.15)

where we separated the �-model kinetic term

L� D f 2

4
TrŒ.D�U/TD�U � ; (5.16)
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Fig. 5.1 Pictorial representation of the two-site model. The Goldstone matrix U is represented
as a “link”, i.e. a segment with vertical lines at the ends corresponding to the global SO.5/L and
SO.5/R groups. The elementary and composite states are associated to different “sites”, represented
by the gray square and circle. The left site can be interpreted as the elementary group SU.2/0L �
U.1/0Y under which W and B transform, the right one is the analogous group for Q�, fSO.4/. The
corresponding spurions G, G0 and QG are also indicated. Their location reminds the symmetry groups
under which they transform

from the “gauge” terms Lg D Lg
cs C Lg

el which only contain the kinetic terms of
the elementary and the composite gauge bosons. The covariant derivative of the
Goldstone fields, which gives rise to all the interactions between the Goldstones
and the gauge fields, is defined as

D�U D @�U � iA�U C iU QR� ; (5.17)

with the elementary field A� given, in analogy to Eq. (5.4), by

A� D g0W
˛
�T˛L C g0

0B�T3R ; (5.18)

and with

QR� D Qg� Q�a
�Ta : (5.19)

The Lagrangian for the composite sector vector resonances is given by

Lg
cs D �

1

4
TrŒ Q��	 Q��	� ; (5.20)

where Q��	 D @� Q�	 � @	 Q�� � iQg�Œ Q��; Q�	�. Finally, the Lagrangian for the elementary
gauge fields, Lg

el, coincides with the one we introduced in the non-linear �-model in
Eq. (5.5).

Let us now discuss briefly the mass spectrum of the gauge fields. The Goldstone
Lagrangian in Eq. (5.16) contains a mass term that mixes the elementary gauge
fields W and B with the composite fields Q�. As can be inferred from the previous
discussion about the embedding of the SM gauge group, the massless gauge states
correspond to the unbroken SU.2/L�U.1/Y gauge invariance and are easily obtained
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by diagonalizing the mass matrix. In this way one also finds the masses of the heavy
vector resonances

m2
L D

g20 C Qg2�
2

f 2 ' Qg
2
�

2
f 2 ; m2

3R D
g02
0 C Qg2�
2

f 2 ' Qg
2
�

2
f 2 ; m2

X D
Qg2�
2

f 2 ;

(5.21)

which correspond respectively to the resonances associated to the T˛L , to the T3R and
to the SO.5/=SO.4/ coset generators. The SM gauge couplings are given by the
expressions

1

g2
D 1

g20
C 1

Qg2�
' 1

g20
;

1

g02 D
1

g02
0

C 1

Qg2�
' 1

g02
0

; (5.22)

while the couplings among the heavy resonances are of order Qg�.
Similarly to the non-linear �-model described in the Sect. 5.1.1, the two-site

model is a non-renormalizable theory with a cut-off ƒ that can at most reach the
scale 4�f , where the �-model interactions in Eq. (5.16) become non-perturbative.
The divergence counting rule for the two-site model is similar to the one given in
Eq. (5.6). The only new ingredients are the heavy vector field and the Qg� coupling
which enter in a way similar to the elementary gauge bosons and couplings, namely

ƒ2f 2
�
ƒ

4�f

�2L �
…

f

�E� �gV

ƒ

�EV
� Qg��
ƒ

�E� � @
ƒ

�d �gf

ƒ

�2� � Qg�f
ƒ

�2Q�
: (5.23)

The important novelty of the two-site construction, with respect to the minimal
non-linear �-model of Sect. 5.1.1, is the fact that the Higgs is now a NGB with
respect to two independent symmetry groups instead of just one. This means
that its dynamics and in particular its effective potential is “doubly protected”
through a collective breaking mechanism. Let us explain with more details how this
mechanism works. Imagine setting the Higgs to its VEV, which corresponds to h…4i
constant and the other components of… vanishing. This produces a constant matrix
U that can be eliminated from the Lagrangian by either performing an SO.5/L or an
SO.5/R transformation in Eq. (5.13) with either �L D UT or �R D U . This means
that the Higgs VEV always cancels if any of the two groups is an exact symmetry
of the theory. The Higgs potential, and also all the effects triggered by EWSB can
only originate from the breaking of both symmetries.

In order to better exploit the implications of the symmetries we introduce the
spurions G, G0 and QG associated to the gauging of the SU.2/L and U.1/Y subgroups
of SO.5/ and of the SO.4/ subgroup of SO.5/R. The G and G0 spurions appear in
the rewriting of the elementary gauge fields

A� D G˛W˛
� C G0B� D G˛ AL TALW˛

� C G0
AL

TAL B� ; (5.24)
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with the AL index in the adjoint of SO.5/L and ˛ in the triplet of the elementary
SU.2/0L group. The physical values of these spurions are

G˛ D g0T
˛
L ; G0 D g0

0T
3
R : (5.25)

The new spurion QG is introduced by replacing QR� in Eq. (5.19) with

QR� D QGa Q�a
� D QGAR aTAR Q�a

� ; (5.26)

where the AR index is in the adjoint of SO.5/R. The other index, a, is in the adjoint
of the group fSO.4/, which we define as the group under which only the Q�a

� fields

transform. The physical value of QG is

QGa D Qg�Ta ; (5.27)

and it breaks the SO.5/R �fSO.4/ group to the diagonal SO.4/ subgroup.
In order to generate an operator contributing to the Higgs potential we now need

to insert, in addition to the spurions related to the elementary couplings, also the
ones that correspond to the composite Q� resonances. It can be easily checked that
the leading contributions to the potential come from operators containing 4 spurions.
Examples of such operators are

cg

16�2
f 4Tr

�
G˛G˛U QG˛ QG˛UT


and

cg0

16�2
f 4Tr

�
G0G0U QG˛ QG˛UT


: (5.28)

The presence of two additional powers of the gauge couplings with respect to
the case of the non-linear �-model in Eqs. (5.9) and (5.10) reduces the degree of
divergence from quadratic to logarithmic. To further reduce the divergence and make
the potential finite at one loop we need to introduce one additional symmetry under
which the Higgs is a Goldstone. This is achieved in the three-site model as we will
discuss in the following section.

5.1.3 The Three-Site Model

The key ingredient for the construction of the three-site model, schematically
depicted in Fig. 5.2, is a pair of identical �-models based on the coset SO.5/L �
SO.5/R=SO.5/V . The Goldstones are parametrized by two SO.5/ matrices U1 and
U2 for a total of 20 states, …A

1 and …A
2 . The leading-order Goldstone Lagrangian is

given by

L� D f 21
4

Tr
�
.D�U1/TD�U1

C f 22
4

Tr
�
.D�U2/TD�U2


: (5.29)
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Fig. 5.2 Pictorial
representation of the
three-site model

Notice that in Eq. (5.29) we kept the decay constants of the two �-models as
independent parameters. The number of free parameters could be reduced by
imposing a 1$ 2 discrete symmetry, which enforces the relation f1 D f2.

The symmetries of the two �-models, SO.5/1L � SO.5/1R and SO.5/2L � SO.5/2R,
are broken by gauging. As in the two-site case, the “first” subgroup SO.5/1L is
broken by the couplings with the elementary gauge bosons and the “last” one,
SO.5/2R, by the couplings with Q�. The remaining subgroups, SO.5/1R and SO.5/2L,
are broken by gauging their vector combination. The ten associated gauge fields,
�A
�, whose coupling is denoted by g�, become massive by eating ten Goldstones and

are interpreted as resonances of the composite sector.
The gauge structure, summarized in Fig. 5.2, corresponds to the covariant

derivatives

D�U1 D @�U1 � iA�U1 C iU1R� ;

D�U2 D @�U2 � iL�U2 C iU2 QR� ; (5.30)

where R� and L� are actually identical, R� D L� D g��A
�TA, while A� and QR�

are defined in Eqs. (5.18) and (5.19). After introducing the spurions, R� and L� are
rewritten as

R� D GR
A�A

� D GR
A1R A TA1R�A

� ;

L� D GL
A�A

� D GR
A2L A TA2L�A

� ; (5.31)

and transform under different symmetries, respectively SO.5/1R and SO.5/2L. The
index A carried by the two spurions is associated to an SO.5/� group under which
the �A

� field transform in the adjoint representation while all the other fields are
invariant. The physical values of the spurions are

GR
A D GL

A D g� TA ; (5.32)

and break the SO.5/1R � SO.5/2L � SO.5/� to the vector combination. As in the two-
site model, additional spurions are associated to the SM couplings, G and G0, and to
the Q�, QG (see Eqs. (5.24) and (5.26)).

In the three-site model the Higgs dynamics is triply protected by the Goldstone
symmetries. To understand this better let us set the Higgs to its VEV. This
corresponds to constant configurations h…O4

1;2i of the Goldstone fields …O4
1;2. These

constant configurations can be eliminated by a symmetry transformation provided
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that at least one of the broken symmetries is restored by setting the corresponding
gauge coupling to zero. For instance if we set g� to zero the SO.5/1R and SO.5/2L
symmetries are restored and they can be used to get rid of h…O4

1i and h…O4
2i. The

situation is slightly more involved in the case of Qg�. To understand the collective
breaking mechanism in this case, it is important to remember that even in the
presence of a non-vanishing g� the vector combination of SO.5/1R and SO.5/2L is still

unbroken and it can be used to set h…O4
1i to zero. The VEV is thus moved entirely

onto…O4
2 and, if Qg� is zero, can be eliminated by an SO.5/2R transformation. The same

holds for the elementary couplings, g0 and g0
0. Therefore, any physical effect of the

Higgs VEV is necessarily mediated by the three couplings g�, Qg� and g0 (or g0
0).

The presence of the unbroken vector combination of SO.5/1R and SO.5/2L has also
another implication: any Higgs configuration, including a VEV, chosen for U1 can
always be rotated away and moved to U2 and vice versa. To represent the Higgs it is
thus better to choose the invariant combination U1U2. Notice also that in the three-
site model the Goldstone Higgs decay constant does not coincide with any of the
�-models decay constants, instead it is linked to them by the relation

1=f 2 D 1=f 21 C 1=f 22 : (5.33)

This relation can be easily derived from the Higgs effective Lagrangian in which
the gauge resonance have been integrated out. We will explicitly perform this
computation at the end of the section.

The triple collective breaking of the shift symmetry provides a further reduction
of the degree of divergence of the Higgs potential. In particular the Higgs potential
becomes finite because it must contain at least two additional powers of g�.
Performing the spurion analysis one actually finds no contributions of order g2�. The
leading operators, like

cg0

.16�2/3
TrŒG0 U1 GR

A UT
1 G0 U1 GR

BUT
1 �TrŒGL

AU2 QGa UT
2 GL

BU2 QGa UT
2 � ; (5.34)

contain four powers of g�. This further lowers the degree of divergence. Indeed the
rule in Eq. (5.23) shows that the gauge contribution to the potential is not only finite
at one loop, but it starts diverging at the three-loop order.

The reduction of the degree of divergence in the Higgs potential due to the
collective breaking can also be easily understood in a diagrammatic way. In order
to be sensitive to the breaking of all the Goldstone symmetries any diagram
contributing to the Higgs potential must include simultaneously the elementary
gauge fields, the �� and the Q�� fields. The schematic structure of a one-loop
contribution is shown in Fig. 5.3. It is easy to see that at least four vertices coming
from the gauge interactions in the Goldstone Lagrangian in Eq. (5.29) are needed.
As can be seen from the explicit form of the Lagrangian, each vertex carries two
powers of the gauge couplings. This explains why in Eq. (5.34) we found four
powers of g� along with two powers of the elementary coupling g0 and of Qg�.
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Fig. 5.3 Schematic representation of a one-loop contribution to the Higgs potential induced by
gauge fields. The double-line propagators represent the heavy gauge fields, while the single-line
one represents the elementary states. The black dots denote the interaction vertices, which also
include the Higgs field, coming from the gauge interactions in Eq. (5.29)

Gauge Fixing

Before concluding the discussion of the gauge sector of the three-site model it is
useful to briefly discuss the issue of gauge fixing. A common choice is to adopt
a “partial” unitary gauge, that is to remove the Goldstones eaten by the �� and
Q�� fields, while keeping in the Lagrangian the complete Higgs fourplet. Due to a
remnant of the symmetries at the middle and right-most site, the “partial” unitary
gauge choice does not completely fix the form of the Lagrangian: we can still choose
how the Higgs fourplet is embedded in the U1 and U2 matrices.

A convenient choice is to remove the Higgs from U2 by setting it to the identity
while keeping the full dependence on U1

U1 D U D exp

 
i

p
2

f
HiT

i

!
; (5.35)

where Hi correspond to the four Higgs components. With this gauge choice the
only dependence on the Goldstones appears at the left-most site, resulting in a
particularly simple form for the Lagrangian of the composite sector.

Other simple gauge fixing choices are possible. For instance one can move the
full Higgs dependence on the U2 matrix while setting U1 equal to the identity. In
this way one recovers the usual picture in which the Higgs interacts directly only
with the composite states and not with the elementary sector. A third possibility is
to “split” the Higgs into the two Goldstone matrices as

U1;2 D exp

 p
2i

f

f 21;2
HiT

i

!
: (5.36)

The one in Eq. (5.36) defines the “unitary gauge” of the theory, indeed it ensures
that the Goldstones do not have a quadratic mixing with the gauge fields [21].

As an example, we now compute the Goldstone Higgs decay constant as a
function of the original �-models parameters f1;2. For this purpose we use the gauge
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choice in Eq. (5.35). In this gauge the only dependence of the Lagrangian on the
Goldstone matrix comes from the covariant derivative D�U (see Eq. (5.30)). This
quantity can be rewritten by using the identity

U
T
D�U D U

T
@�U � i U

T
A�U C iR� D �iA

�
U

T
�
C iR� ; (5.37)

where A.U
T
/ corresponds to a gauge transformation of the elementary fields given

by

A.U
T
/

� D U
T
.A� C i @�/U : (5.38)

With the above definitions the Lagrangian in Eq. (5.29) can be written as

L� D f 21
4

Tr

��
A.U

T
/

� � g���
�2	
C f 22
4

Tr
h�

g��� � Qg� Q��
�2i

: (5.39)

From this expression we can derive an effective action for the Goldstone Higgs by
integrating out the massive vector resonances. The calculation is straightforward if
we are only interested in the two-derivative terms. The equations of motion at zero
momentum for the Q� fields and for the SO.4/ components of � imply

Qg� Q�a
� D g��

a
� D

�
A.U

T
/

�

�a
; (5.40)

thus the SO.4/ components in the Lagrangian (5.39) exactly cancel. The equations
of motion for the �i fields in the coset SO.5/=SO.4/, instead, give

g��
i
� D

f 21
f 21 C f 22

�
A.U

T
/

�

�i
: (5.41)

By substituting Eqs. (5.40) and (5.41) back into the Lagrangian we obtain

L�eff D
f 21 f 22

4.f 21 C f 22 /

X
i

ˇ̌
ˇ̌�U

T
@�U

�i
ˇ̌
ˇ̌2 : (5.42)

From this expression we can immediately read the Goldstone decay constant

1=f 2 D 1=f 21 C 1=f 22 : (5.43)

In the case f1 D f2 D f the Higgs decay constant simply becomes f D f1=
p
2 D

f2=
p
2.
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5.1.4 The Matter Sector

So far we included in our effective model only the gauge degrees of freedom. To
complete the construction we also need to introduce the SM fermions and couple
them to the Higgs. Following the hypothesis of partial compositeness, we assume
that the SM fermions originate from elementary degrees of freedom, external with
respect to the composite sector. These states are then coupled linearly to some
composite sector operator.

The construction is analogous to the one of the SM vector bosons that we
discussed in the previous sections. The elementary vectors arise from gauging
the SM subgroup embedded in the SO.4/ symmetry of the composite sector.
This kind of construction gives rise to linear couplings of the form g0W˛

�J�˛ ,
where J�˛ denotes a current operator coming from the composite dynamics. The
linear coupling results in a mixing of the elementary fields with the composite
resonances. For the vector bosons, indeed, we find in our Lagrangian terms of the
form Lmix ' .g0=g�/m2

� W˛
� �

�
˛ .7 Analogously, for the elementary fermions, q, we

assume a mixing of the form Lmix ' .yq=g�/m�q , where yq is the coupling of
the elementary field with the corresponding fermionic operator and  generically
denotes the fermionic composite resonances. Because of the mixing, the light
states, which eventually describe the SM particles, are linear combinations of the
elementary fields, q, and the composite ones,  .

Before starting the explicit construction it is important to add a further comment.
In the case of the gauge and Goldstone Lagrangian constructed in the previous
sections the Goldstone symmetry almost completely determined the whole structure
of the model, leaving very narrow space for alternative constructions (on this point
see Sect. 5.1.5). The situation, instead, is considerably different for the fermionic
sector. First of all, the elementary fields can mix with composite operators in many
possible representations of the SO.5/ symmetry group, thus leading to different
quantum numbers for the corresponding fermionic composite states. On top of
this, even the number of composite resonances included in the model is to a large
extent arbitrary and can give rise to a large number of alternatives. In the following
we will focus on a “minimal” scenario in which only one multiplet of composite
fermions is associated to each site. Moreover we will assume that the elementary
states are mixed with operators in the fundamental, the 5, representation of SO.5/.
For simplicity we will introduce in the model only the set of fermionic resonances
that are mixed with the top quark and are responsible for generating its mass, the
so called “top partners”. This minimal construction, however, contain all the main
ingredients of generic multi-site models and can be straightforwardly adapted to
different cases.

7Notice that, due to gauge invariance, the elementary/composite mixing arises from terms of the
form f 2.g0W˛

� � g��˛�/
2, see for instance Eq. (5.16).
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The Two-Site Model

In the case of two sites, focusing for simplicity on the top quark sector, we introduce
only one Dirac fiveplet of fermionic resonances Q . It transforms under the SO.5/R
subgroup and is mixed with the elementary doublet qL D .tL; bL/ and with the
singlet tR. The mixing term is

Lmix D yLf QL
IUIJ Q J C yRf TR

IUIJ Q J C h.c. ; (5.44)

where QL and TR are the embeddings of the qL and tR elementary fermions
into incomplete SO.5/L fiveplets. In Eq. (5.44), as customary, we expressed the
elementary/composite mixing in units of f . The 5 representation decomposes as
5 D .2; 2/˚ .1; 1/ under SO.4/ ' SU.2/L�SU.2/R. The .2; 2/ part consists of two
SU.2/L doublets with opposite U.1/3R charge T3R D ˙1=2. We choose to embed qL in
the negative-charge doublet and tR in the singlet. The explicit form of the embedding
was given in Eqs. (2.116) and (2.111) and we report it here for completeness

QL D 1p
2

2
666664

�ibL

�bL

�itL
tL
0

3
777775
; TR D

2
666664

0

0

0

0

tR

3
777775
: (5.45)

If we identify the U.1/Y symmetry with the subgroup of SO.5/L generated by
T3R, as we did in the previous sections, we do not obtain the correct hypercharges for
the fermions. We saw in the previous chapters that solving this problem requires an
extra U.1/X global symmetry, which acts on the matter fields qL, tR and Q as a phase
rotation with charge X D 2=3. The hypercharge gauge field B� is now introduced
by gauging the subgroup of SO.5/L � U.1/X corresponding to the combination

Y D T3R C X : (5.46)

Given that the Goldstones are not charged under the extra U.1/X , this change in the
definition of Y does not affect their couplings to B� and the construction discussed in
the previous sections can be left unchanged. The W˛

� and the massive resonances Q��
are included, as before, by gauging the SU.2/L subgroup of SO.5/L and the SO.4/
subgroup of SO.5/R, whereas the U.1/X symmetry acts on all sites and there is no
new composite resonance associated to it.

To keep the discussion as simple as possible we also assume that the QCD gauge
group SU.3/c is “external” with respect to the site structure, similarly to the U.1/X
one. This means that it acts on all sites and, in particular, all the fermionic states we
described before belong to the fundamental SU.3/c representation. Alternatively we
could have extended the multi-site construction presented in the previous sections
for the EW gauge fields to the case of the U.1/X and SU.3/c groups. In this way one
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would get additional vector resonances associated to these gauge groups analogous
to the Q�� states. An important difference with respect to the EW case is the fact that
the replicas of the U.1/Y and SU.3/c groups at the various sites are fully gauged,
thus no extra physical Goldsone boson remains in the spectrum. Moreover each new
group factor is associated to its own coupling f , which a priori is independent of the
coupling f related to the SO.5/ invariance.

In order to make clear the symmetry pattern in the fermionic sector, we now
discuss how to introduce the spurions that we will use to analyze the fermionic
contribution to the Higgs potential. Due to the presence of the extra U.1/X
symmetry, the group under which the elementary fields transform is enlarged
to SU.2/0L � U.1/0R � U.1/0X . The charge of the elementary fields under U.1/0R
corresponds to the charge under the original subgroup of SO.5/L generated by T3R,
hence qL has charge �1=2 while tR is neutral. The spurions are two vectors �L

and �R in the 5 representation of SO.5/L and also transform under the elementary
SU.2/0L�U.1/0R�U.1/0X group. The�L spurion is in the 2 representation of SU.2/0L
with U.1/0R charge 1=2 and X0 D �2=3 (the conjugate of the qL representation),
while �R is a singlet with X0 D �2=3 and is neutral under U.1/0R. The physical
values of the �L;R spurions are (compare Sect. 3.3.1)

.�L/
I
˛ D

yLfp
2

�
0 0 Ci C1 0
Ci �1 0 0 0

	I

˛

; .�R/
I D yRf

�
0 0 0 0 1

I
: (5.47)

By using the previously defined objects we can rewrite the Lagrangian in Eq. (5.44)
as

Lmix D qL
i�iI

LUIJ Q J C tR�
I
RUIJ Q J C h:c: ; (5.48)

where i denotes the SU.2/0L index, while I and J are the usual SO.5/ indices.
The physical value of the spurions �L;R breaks the composite-sector group

SO.5/L � U.1/X and the elementary one SU.2/0L � U.1/0R � U.1/0X, preserving the
SU.2/L � U.1/Y subgroup that is gauged by the W and B elementary fields. The
unbroken SU.2/L is the vectorial combination of SU.2/0L and the SU.2/L subgroup
of SO.5/L, while the hypercharge is the combination of the U.1/0Y subgroup of
the elementary U.1/0R � U.1/0X, whose generator is specified in Eq. (5.46), and the
analogous combination coming from SO.5/L �U.1/X .

As already discussed, in addition to the gauging at the left-most site, we also
gauge the SO.4/ subgroup of SO.5/R by introducing the Q� resonances. This leads to
the covariant derivatives

D�qL D
�
@� � i
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2
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��˛ � i
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0
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D�tR D
�
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2g0
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�
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D�
Q D

�
@� � i

2g0
0

3
B� � iQg� Q��

�
Q : (5.49)
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Fig. 5.4 Pictorial
representation of the matter
sector of the two-site model

Notice that Q is neutral under SO.5/L, therefore its covariant derivative does not
contain the W˛

� gauge fields. It contains instead B� because Q is charged under
U.1/X and the hypercharge is defined as in Eq. (5.46). In terms of the covariant
derivatives the elementary and composite sector kinetic Lagrangians read

Lf
el D iqL�

�D�qL C itR�
�D�tR ;

Lf
cs D i Q ��D�

Q C QmIJ Q I
Q J ; (5.50)

where a mass term Qm D diag. QmQ; QmT/, different for the fourplet and singlet
components of Q , has also been introduced. This mass matrix QmIJ is a spurion with
two indices in the fundamental of SO.5/R and breaks this symmetry to its SO.4/
subgroup.

The fermionic sector of the two-site model is summarized in Fig. 5.4. With
respect to the gauge sector presented in Sect. 5.1.2, the only new parameters that
we introduced are �L;R and Qm, which are masses, not new couplings. This makes
particularly easy to generalize the divergence counting rule of Eq. (5.23). The result
is
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ƒ

��
; (5.51)

where  generically denotes the fermions qL, tR or Q , while � is any of the masses
�L;R or Qm. In the above formula V and g collectively denote all the vector fields
and the gauge couplings. The positive integer � counts the number of mass-term
insertions and it is forced by the chiral symmetry ( L ! � L,  R !  R and
�! ��) to be even or odd depending on the chirality of the operator.

Now that we introduced all the necessary tools it is easy to generalize the
discussion on the calculability. The fermionic contribution to the Higgs potential
is logarithmically divergent. The local operators associated to the divergence are

cR
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(5.52)

and
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(5.53)
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and originate, respectively, from loops of the elementary tR and qL. Notice that
the functional dependence on the Higgs is completely determined by the spurion
analysis, in agreement with the results of Chap. 3.

The Three-Site Model

To obtain a calulable Higgs potential we need to consider the three-site model. As
shown in Fig. 5.5, this is constructed by introducing two fiveplets of fermionic Dirac
resonances  and Q . The former transforms under the SO.5/1R group,8 while Q 
transforms in the fundamental of SO.5/2R. The Lagrangian is similar to the one of
the two-site case, with the difference that the elementary fields mix now with  and
not with Q :

Lmix D yLf QL U1 C yRf TR U2 C� U2 Q C h.c. (5.54)

The other terms present in the leading-order Lagrangian are

Lf
el D iqL�

�D�qL C itR�
�D�tR ;

Lf
cs D i Q ��D�

Q C QmIJ Q I
Q J C i ��D� Cm  ; (5.55)

where the covariant derivatives for the elementary fields and for Q are defined in
Eq. (5.49) and

D� D
�
@� � i

2g0
0

3
B� � ig�T

A�A
�

�
 : (5.56)

Notice that the  mass term m does not break any symmetry, differently from Qm
which breaks SO.5/2R to its SO.4/ subgroup.

To simplify the Lagrangian in Eqs. (5.54) and (5.55) we assumed that the
composite sector is invariant under parity (Ex ! �Ex) and the only terms that break
this symmetry are the mixings of the elementary fields with the composite states. If

Fig. 5.5 Pictorial
representation of the matter
sector of the three-site model

8We could equivalently assume that the field transforms under the vector combination of SO.5/1R
and SO.5/2L , in analogy with the �� gauge fields. The choice made in the main text, however, helps
in clarifying the pattern of symmetry breaking induced by the fermions and makes simpler the
introduction of spurions.
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we do not impose this invariance a different mixing is allowed between the left- and
right-handed components of  and Q in Eq. (5.55).

We can now introduce spurions and analyze the fermion contributions to the
Higgs potential. The mixing Lagrangian in Eq. (5.54) can be rewritten as

Lmix D qi
L�

iI
L .U1/IJ J C tR �

I
R.U2/IJ J C  I

�I
J.U2/IJ Q J C h.c. (5.57)

The associated spurions,�L and�R, transform under both the elementary SU.2/0L�
U.1/0R�U.1/0X and the SO.5/1L�U.1/X group and break the global symmetry to the
SU.2/L �U.1/Y subgroup as explained in the two-site case. The new spurion� has
indices in SO.5/1R and in SO.5/2L. Its physical value �I

J D �ıi
J is proportional to

the identity and therefore breaks SO.5/1R � SO.5/2L to the vector subgroup.
The leading local contribution to the Higgs potential comes from operators like

cR

.16�2/2
1

f 2
�


R U1�U2 Qm2UT

2 �
T UT

1 �R ; (5.58)

and similarly with �L. These fermionic contributions are finite at one loop and start
diverging only at two loops, differently from the gauge contributions of Eq. (5.34)
for which the divergence was postponed to three-loop order.

Before concluding the discussion of the three-site model it is useful to add
a comment on the choice of the Q fermion representation. In our construction
we assumed that Q is a complete SO.5/2R representation although we allowed, in
analogy to the gauge sector, an explicit soft breaking due to the mass matrix Qm
which only respect an SO.4/ invariance. This choice was necessary in order to
obtain the protection due to the collective breaking mechanism. For instance the
assumption that the Q fermions fill incomplete SO.5/2R representations (of course
always respecting the SO.4/ invariance) would have induced a hard breaking of the
symmetry and no further reduction in the degree of divergence. As a consequence
the fermion contribution to the Higgs potential would have been logarithmically
divergent as in the two-site model. Introducing incomplete representations of
fermions at the last site can be compatible with the calculability of the Higgs
potential only in models with more than three sites, where the additional symmetries
ensure enough protection to the Higgs dynamics.

5.1.5 Alternative Constructions

As already discussed, the structure of the multi-site phenomenological models,
although quite constrained by the Goldstone symmetry and the collective-breaking
principle, admits some variations, especially in the fermionic sector. To give an idea
of the possible alternative constructions we present here the model proposed in [12].

The structure of the gauge and Goldstone sector of the model resembles closely
the one of the three-site model presented in Sect. 5.1.3. It is based on two non-linear
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Fig. 5.6 Pictorial representation of the gauge sector of the alternative two-site model. The “half”
link on the right represents the non-linear � -model SO.5/2L=SO.4/

�-models: one corresponding to the SO.5/1L � SO.5/1R=SO.5/V structure and the
second given by SO.5/2L=SO.4/. Schematically it can be represented as shown in
Fig. 5.6. The symmetry structure gives rise to 14 Goldstones, ten of them coming
from the SO.5/1L�SO.5/1R �-model and the remaining from the SO.5/2L=SO.4/ one.
We encode the two sets of Goldstones in the matrices U and U respectively. Ten
Goldstones are then eaten by the introduction of the composite gauge resonances �
that gauge the vector combination of the SO.5/1L and SO.5/2L groups. The elementary
gauge fields, W and B, are instead associated to the gauging of the SU.2/L � U.1/L
subgroup of SO.5/1L. The leading-order Lagrangian of the Goldstone boson sector
is given by

L� D f1
4

TrŒ.D�U/TD�U �C f 22
4

di
�d�i ; (5.59)

where the definition of the covariant derivative D�U is similar to the expression for
U1 given in Eq. (5.30) and the di

� symbol is defined in analogy to Eq. (5.3). As in the
three-site model the Goldstone Higgs decay constant f is given by 1=f 2 D 1=f 21 C
1=f 22 and the Higgs field is represented by the U  U combination which is invariant
under the unbroken vector subgroup of SO.5/1L and SO.5/2L. In the present set-up
the gauge contribution to the Higgs potential is finite at one-loop order, although it
diverges at two loops.

Notice that the above construction is in some way “intermediate” between the
two-site and three-site models of Sects. 5.1.2 and 5.1.3. For instance it can be
formally obtained from the three-site construction by decoupling (or integrating out)
the Q� resonances. On the other hand the two-site models can be recovered from the
construction presented in this section in the f2 !1 limit.

We can now describe the fermionic sector. As in the two-site and three-site
models, the qL and tR elementary fermions are embedded in incomplete SO.5/1L
representations. In the present construction they mix with two composite multiplets
 q and  t, both in the fundamental representation of SO.5/1R. The kinetic terms for
the fermions and the gauge interactions are analogous to the ones described in the
two-site model, with the only difference that now a complete SO.5/ group is gauged
by the �� resonances. The Lagrangian containing the mass terms can be split into the
part containing the elementary fields and the part that only involves the composite
states, Lmix D Lel

mix C Lcs
mix. The mixing part for the elementary states is

Lel
mix D yLf QL U  q C yRf TR U  t C h:c: (5.60)
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The composite fermions mass terms contain, in addition to Dirac masses for the  q

and  t fields, also mixing mass terms that only couple the left-handed component
of  q and the right-handed component of  t, namely

Lcs
mix D mq q q C mt t t (5.61)
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5
C m2  qL tR C m3  qR tL C h:c:

Notice that the peculiar structure of the mixing between the  q and  t fields, as
well as the structure of the elementary/composite mixing terms, is necessary to
ensure the finiteness of the fermion contribution to the Higgs potential at one loop.
If other mass mixing terms allowed by the symmetry structure are included, such as
m
�
 qRU
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5
C h:c:, m

�
 qU
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UT q

�
5

or m
�
 tU

�
5

�
UT t

�
5
, the fermion

contribution to the Higgs potential develops a logarithmic divergence. Notice that
not including these mass terms is an ad hoc assumption, because they are not
protected by any symmetry.

The fermionic sector of the model is identical to the three-site construction. This
can be easily seen by the following identification of the fields

 qR !  R ;  qL ! Q L ;  tL !  L ;  tR ! Q R : (5.62)

By working in the gauge in which the Goldstones are described only by the U matrix
(and by the U1 in the three-site model), one can easily check that the masses and
mixing terms for the fermions can be identified with the ones given in Eqs. (5.54)
and (5.55) if we allow for different mixings� for the left- and right-handed fermion
components by breaking parity. Analogously, if we extend the construction of the
present section to n sites, the fermionic sector will be similar to the one of a model
with 2n�1 sites built along the lines of Sect. 5.1.4. The only real difference between
the three-site construction and the alternative models presented in this section
is due to the fact that the composite fermions are associated to different global
symmetries and, as a consequence, have different interactions with the composite
gauge resonances.

5.1.6 Locality in Theory Space

To conclude the discussion about the construction of the multi-site models it is
instructive to take a closer look at the Lagrangian of the explicit realizations. The
symmetry structure of the underlying non-linear �-models naturally led to a peculiar
“nearest-neighbor” form for the Lagrangian. This structure can be easily seen in the
bosonic sector of the model. The leading terms in the effective Lagrangian are the
ones that respect the whole global symmetry of the non-linear �-models and include
the kinetic operators for the Goldstones (excluding the gauge interactions) and for
the gauge fields. All these operators are “local” in theory space, i.e. they involve
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fields belonging to a single site or to a single link. The other operators we introduced
in the Lagrangian do not respect the whole global symmetry and are suppressed by
powers of the couplings that induce the breaking. An example are the interactions
between the Goldstones and the gauge fields, which are weighted by the gauge
couplings. Notice that in the multi-site constructions the gauge couplings (including
the ones of the composite vector fields) are assumed to be perturbative. Thus an
insertion of a gauge coupling leads to an effective suppression of the corresponding
operator. Following this logic, the leading operators that break the global symmetry
are the ones that involve fields connected to the same link, or, in other words, are
of nearest-neighbor form. Operators that involve fields in non-near sites necessarily
break more symmetries, thus are suppressed by more insertions of the symmetry
breaking couplings.

It is easy to realize that the nearest-neighbor form is also tightly related to the
collective breaking mechanism. Indeed it guarantees that the various subgroups
under which the Higgs transforms as a Goldstone are broken independently of
each other. As a consequence, insertions of multiple symmetry-breaking couplings
are necessary to generate operators which depend on the Higgs VEV, such as the
Higgs potential. If the locality assumption is not respected the collective breaking
mechanism is typically spoiled and the Higgs observables become divergent.

The Lagrangian of the multi-site models does not naively follow the minimal One
Scale One Coupling (1S1S) power counting in Eq. (3.23), but it can be described
by a simple extension of it. The non-linear �-models associated to the global
symmetry structure of the multi-site constructions are interpreted as an effective
description of the underlying strongly coupled dynamics. They are thus described
by an effective Lagrangian that follows the 1S1S power counting. The exact values
of m� and g� characterizing this part of the Lagrangian do not have a big impact
on our constructions as long as g� is (much) larger than the gauge couplings of the
vector resonances.9 The elementary fields are external with respect to the composite
dynamics and they enter in the power-counting as external sources associated to a
weak coupling which breaks the global invariance of the composite sector (namely
the global SO.5/1L symmetry at the left-most site). There is however an important
subtlety related to the vector and fermion states introduced at the composite sites.
Although these resonances are interpreted as composite states, they are assumed not
be fully strongly coupled so that their dynamics can be described perturbatively.
This meas that from the point of view of the power-counting we effectively split
the composite sector into two parts: a fully strongly coupled sector encoded in the
non-linear �-model and a semi-perturbative sector that includes the � and  states.
This assumption is incorporated in the power counting by treating the composite
resonances as weakly-coupled external sources with a coupling Qg� that is smaller
than the �-model coupling g�.

9For simplicity here we associate all the � models to a single f decay constant and a single m
�

.
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We will now briefly discuss how the multi-site models are modified by the
introduction of non-nearest-neighbor operators. As an example of non-minimal
terms we can consider in the three-site model the non-nearest-neighbor interaction

Lnon�local D f 02

4
TrŒ.D�.U1U2//T.D�.U1U2//� : (5.63)

This operator induces a breaking of the SO.5/1R and the SO.5/2L symmetries to
their diagonal subgroup and at the same time feels the breaking of the SO.5/1L and
SO.5/2R due to the gauging of the elementary fields W and B and the composite
vector resonances Q�. As a consequence its coefficient is expected to be subleading
with respect to the one of the usual kinetic terms of the Goldstones. It is easy to
understand that the inclusion ofLnon�local into the three-site Lagrangian reintroduces
a logarithmic divergence in the gauge contribution to the Higgs potential. The
operator in Eq. (5.63) in fact is analogous to the kinetic term for the Goldstones
in the two-site model (Eq. (5.16)) as can be seen by the identification U1U2 ! U . In
exactly the same way the inclusion of the operator

Lnon�local D f 02

4

X
i

ˇ̌
ˇ�UTUT D�.UU/

�i
ˇ̌
ˇ2 (5.64)

in the alternative construction of Sect. 5.1.5 destroys the collective breaking mech-
anism and reintroduces a divergence in the Higgs potential as in the non-linear �-
model case. “Non-local” operators such as (5.64) have sometimes been considered
in the literature in connection to the multi-site constructions (see for example [12])
because they induce a tree-level correction to the S parameter which can, in part,
compensate the sizable contribution coming from the heavy vector resonances (see
Sect. 7.1.2). As we discussed before, however, this can be done only at the price of
violating the power counting and the collective-breaking mechanism.

Non-nearest neighbor interactions can also be constructed in the femionic sector.
An explicit example is the operator

Lnon�local D i�
� Q �

i
��
�
.U1U2/T.D�.U1U2//


i5

� Q �
5
C h:c: ; (5.65)

where . Q /i and . Q /5 denote the .2; 2/ and .1; 1/ SO.4/ components inside the
SO.5/ fiveplet Q . The above operator does not modify the fermion masses and
contains only derivative interactions with the Higgs. For this reason it does not
contribute to the Higgs potential at one loop and the violation of the collective
breaking structure manifests itself only at higher order. Operators like (5.65)
correspond, after integrating out the heavy gauge resonances, to terms of the form

i�. Q /i��di
�.
Q /5 C h:c:, where di

� is the CCWZ d-symbol constructed with the
physical Goldstone Higgs and the elementary gauge fields. As we will show in
Chap. 7 this kind of operators, if present with accidentally large coefficients, can
help in cancelling the contribution to S coming from fermion loops.
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To conclude the discussion, it is worth mentioning that the nearest-neighbor
structure is also deeply related to the holographic realizations of the composite
Higgs scenario. As we already mentioned, the multi-site constructions are analogous
to a discretized or deconstructed version of the five-dimensional models. This
can be clearly seen from the schematic moose representations of the multi-site
constructions: each site can be interpreted as a lattice point along the fifth dimension.
The replicas of the SO.5/ group at each site then correspond to the remnant of the
five-dimensional gauge invariance on the four-dimensional slices corresponding to
each lattice point.

From this perspective, the nearest-neighbor assumption becomes equivalent to
the usual concept of locality along the fifth dimension. Moreover the collective-
breaking mechanism corresponds to the protection of the Higgs dynamics in
holographic models that is due to the five-dimensional gauge invariance. Notice that,
in this picture, a complete five-dimensional model coincides, at least formally, with
an effective theory with an infinite number of sites. This allows us to interpret the
finiteness of the Higgs potential in the holographic theories at any loop order as the
result of a collective breaking with an infinite number of independent symmetries.

5.2 The Higgs Potential

The pNBG nature of the Higgs has a deep impact on the Higgs potential: it can
only be generated at the radiative level and is tightly related to the collective
breaking mechanism. One unavoidable, sizable source of breaking of the Goldstone
symmetry is the top quark Yukawa coupling. It is thus reasonable to expect a tight
relation between the Higgs mass and the fermionic sector involved in the generation
of the top mass. The general analysis presented in Chap. 3 confirms this expectation.
In generic composite Higgs models a light mass scale for the fermionic resonances
associated with the top quark, the top partners, is required to minimize the amount
of fine tuning. Moreover in a large class of minimal scenarios, as for instance the
ones with fermionic resonances in the fundamental representation of SO.5/, a strict
relation exists between the Higgs mass and the mass of the lightest top partners.

The calculable phenomenological models described in the previous sections
offer a privileged framework to explicitly test the validity of the general results.
The simplicity of the multi-site constructions, moreover, allows us to derive
explicit formulae for the Higgs potential which can be used to refine the estimates
presented in Chap. 3. In the following we will analyze in details the structure of the
Higgs potential in two scenarios, following [22, 23]. The first one is the minimal
model we presented in the previous sections in which the top partners belong
to the fundamental representation of SO.5/. As a second scenario we consider
a representative of the minimally tuned models (see Chap. 3) in which the right-
handed top component is fully composite.
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5.2.1 The 5 C 5 Model

The first scenario we consider is the three-site model presented in Sects. 5.1.3
and 5.1.4. As we saw, the structure of the fermionic sector of the model is in large
part determined by the choice of the embedding of the elementary fermions qL and
tR in incomplete representations of the SO.5/ group. In the model we consider both
elementary states are embedded in the fundamental representation, the 5, thus we
will denote this scenarios as the “5C 5 model”.

In the general analysis of Chap. 3 we saw that this type of model belongs to
the category of “doubly-tuned” scenarios in which the amount of tuning needed
to obtain a realistic configuration is significantly higher than the naive expectation.
The explicit computation of the Higgs potential presented in this section will be also
useful to explicitly verify the origin of the additional tuning.

Explicit Form of the Potential

The most relevant contribution to the Higgs potential comes from the fermionic
resonances that are coupled to the top quark, namely the ones we included in our
explicit multi-site constructions in Sect. 5.1.4. The spectrum of the top partners
in the three-site model contains two levels of resonances with the same quantum
numbers. The  and Q resonances transform in the fundamental representation
of SO.5/ and have U.1/X charge 2=3. Under the unbroken SO.4/ � U.1/X
group they can be decomposed into a fouplet, in the .2; 2/2=3 representation,
and a singlet, in the .1; 1/2=3. Each fourplet contains two SU.2/L doublets. The
one with T3R D �1=2 gives rise to a the fT;Bg multiplet with the same SM
quantum numbers of the elementary qL. The remaining doublet, fX5=3;X2=3g,
transforms in the 27=6 representation under the SU.2/L � U.1/Y SM group
and contains the exotic resonances X5=3 and X2=3 with electric charges 5=3
and 2=3 respectively. Finally, the singlets give rise to resonances with the
same quantum numbers of the elementary tR, which we denote by QT . The
spectrum of the resonances and their properties will be discussed in details in
Chap. 6.

The Higgs potential can be straightforwardly computed by using the standard
Coleman–Weinberg formula

V.H/ D � 2Nc

8�2

Z
dp p3 log

"Y
i

�
p2 Cm2

i .H/
�#
; (5.66)

where Nc D 3 denotes the number of QCD colors and the product inside the
logarithm argument extends to all masses of the fermionic states mi.H/ written
as a function of the Higgs VEV. A simple trick to compute the expression inside
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the logarithm is to express it as a determinant of the complete mass matrix of the
fermions M

Y
i

�
p2 C m2

i .H/
� D det

�
p2�CMT M


: (5.67)

In order to remove the divergent Higgs-independent part one can subtract from the
potential in Eq. (5.66) its value at H D 0.

The only relevant fermionic states that are coupled to the Higgs are the top and
the resonances of charge 2=3. The contribution of these states to the potential has
the form

V.H/ D � 2Nc

8�2
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dp p3 log

�
1 � F1.p2/C F2.p2/

D.p2/
sin2

�
H

f

�

C F2.p2/

D.p2/
sin4

�
H

f

�	
; (5.68)

where the F1;2.p2/ form factors are functions of the integration variable p and of
the fermion mass parameters but not of the Higgs. The whole dependence on h is
encoded in the trigonometric functions that appear inside the logarithm. The factors
D.p2/ appearing in the denominator of the argument of the logarithm is given by

D.p2/ D 2p2
Y

IDT;QT
.p2 C m2

I
�

/.p2 C m2
I
C

/ ; (5.69)

where mI˙ denote the masses of the charge 2=3 resonances before EWSB. The
˙ sign refers to the two levels of composite resonances that are present in the
three-site set-up. Notice that all these masses include the shift due to the mixing
with the elementary states. The initial factor p2 that appears in Eq. (5.69) is due to
the presence of the top which is massless before EWSB. Finally the form factors
F1;2.p2/ are given by

8<
:

F1.p2/ D . QmQ � QmT/�
2C1.p2/

�
.y2L � 2y2R/f

2 � y2Ly2Rf 4C2.p2/


F2.p2/ D �. QmQ � QmT/
2�4y2Ly2Rf 4

: (5.70)

The C1;2.p2/ functions will not be needed for our analysis, however we report them
here for completeness:
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The potential can be approximated by expanding at leading order the logarithm
in Eq. (5.68). This approximation is sufficiently accurate if we are interested in
phenomenologically viable scenarios, in which a gap is needed between the Higgs
VEV and the Godstone decay constant: hHi=f ' v=f � 1.10 As will be clear in the
following, in order to minimize the potential and compute the Higgs mass we need
to consider the terms of order sin4.H=f / as well as the sin2.H=f / ones. This means
that, in principle we should also keep into account the second order of the logarithm
expansion in Eq. (5.68). However, as we will see below, a sizable cancellation of the
sin2.H=f / terms is needed in order to ensure v=f � 1, thus the second order of the
expansion is always negligible in realistic scenarios.

After the expansion and the integration, the potential takes the generic form
(compare Eq. (3.111))

V.H/ ' ˛ sin2.H=f /C ˇ sin4.H=f / : (5.72)

By minimizing the potential we find the physical Higgs VEV
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� hHi

f

�
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2ˇ
; (5.73)

and the value of the Higgs mass
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H D
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f 2
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�
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f

�
: (5.74)

The requirement v=f � 1 implies that the ˛ coefficient must be much smaller
than ˇ. However, as can be seen from the explicit expressions of the form factors
in Eq. (5.70), the coefficient ˛ is generated at leading order, O.y2/, in the elemen-
tary/composite mixings, whereas ˇ is generated only at O.y4/. This structure leads
to the presence of an additional fine tuning in the 5C 5 models with respect to the
naive estimate  D v2=f 2 in agreement with the results obtained in the general anal-
ysis of Sect. 3.3 . A more careful inspection of Eq. (5.70) shows that the leading con-
tribution to ˛ is proportional to y2L�2y2R. The cancellation thus leads to the condition

yL '
p
2yR ; (5.75)

i.e. the left and right mixings of the top must be roughly of the same size. This
relation is very well satisfied numerically for realistic configurations [13].

10The expansion is not valid in the limit p ! 0, in which the argument of the logarithm diverges.
However in this limit the factor p3 in front of the logarithm compensate for the divergence and
the approximate integrand vanishes for p ! 0. The error introduced by this approximation is thus
small. As discussed in Sect. 3.3.2, the presence of the divergence is related to the IR contribution to
the Coleman–Weinberg potential coming from the top quark. A fully consistent computation of the
potential can be obtained by first isolating the top contribution and then expanding the remaining
terms which are regular for p ! 0.
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The value of the coefficient ˇ can be easily computed analytically:

ˇ D Nc

16�2
. QmQ � QmT/

2�4y2Ly2Rf 4
X

I D T
�
;T

C

;

QT
�
;QT

C

log.m2
I =f 2/Q

I¤J.m
2
I � m2

J/
: (5.76)

In the limit in which the second level of resonances is much heavier that the first
one, we can use an expansion in the ratio of the heavy and light states masses and
get a simple approximate formula for ˇ:

ˇ ' Nc

16�2
. QmQ � QmT/

2�4y2Ly2Rf 4
log

�
m2

T
�

=m2
QT

�

�
�

m2
T

�

�m2
QT

�

�
m2

T
C

m2
QT

C

: (5.77)

As can be seen from the above formula, when one of the states T� and QT� is much
lighter than the other, the contribution to ˇ coming from the first level of resonances
is enhanced by the logarithmic factor log

�
m2

T
�

=m2
QT

�

�
. In this case the contribution

from the light states completely dominates and the corrections due to the second
layer of resonances become negligible. On the other hand, if the two light states
have comparable masses, the second level of resonances, in certain regions of the
parameter space, can be relatively close in mass to the first one, thus giving sizable
corrections to the Higgs mass. The sign of these corrections is fixed and they always
determine a decrease of the Higgs mass. The size of the corrections is typically
below 50%.11

Light Top Partners for a Light Higgs

For a quantitative estimate of mH we need to determine the size of the yL;R mixings
that appear in the expression for ˇ. These mixings control the generation of the top
Yukawa, thus we can relate them with the top mass mt. An approximate expression
for mt can be derived by using an expansion in sin2.H=f /. The result can be
conveniently rewritten in terms of the yL;R mixings and of the masses of the T and
QT resonances:

m2
t '

. QmQ � QmT/
2

8

y2Ly2Rf 4�4

m2
T

C

m2
T

�

m2
QT

C

m2
QT

C

sin2
�
2H

f

�
: (5.78)

11Additional subleading corrections to the Higgs mass can also come from loops of vector partners.
In particular the two-loop contribution due to gluon partners can be non-negligible in some regions
of the parameter space [24].
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By comparing this expression with the approximate formula for the Higgs mass in
Eqs. (5.74) and (5.77) we find a remarkable relation between mH and the masses of
the lightest T and QT resonances:

m2
H

m2
t

' Nc

�2

m2
T

�

m2
QT

�

f 2

log
�

m2
T

�

=m2
QT

�

�

m2
T

�

� m2
QT

�

: (5.79)

We can now compare the relation in Eq. (5.79) with the general results obtained
in Chap. 3. As can be seen from Eq. (3.122), in the 5C5 models the Higgs mass can
be estimated as

m2
H '

Nc

2�2
�4t v

2 ; (5.80)

where �t denotes any of the yL;R. The yL;R mixings can be related to the top mass. In
particular if yL � yR one can extract the relation

ytop ' yLyR m =f ; (5.81)

where m denotes the mass of the lightest state mixed with the top, m D
min.mT

�

;mQT
�

/. Inserting the result in Eq. (5.81) into the estimate for the Higgs
mass we get

m2
H

m2
t

' Nc

�2

m2
 

f 2
: (5.82)

This equation qualitatively reproduces the relation between the Higgs mass and the
masses of the lightest resonances T and QT found in Eq. (5.79). In the case m2

 D
m2

T
�

D m2
QT

�

the two expressions exactly coincide, while, when a large hierarchy

between the two light states is present, they differ by a factor of O.1/. This shows
that the general analysis of Chap. 3 correctly captures the main connection between
the Higgs and the top partners masses, both at a qualitative and a quantitative level.

The scatter plot of the masses of the T and QT light resonances can be used to
check the validity of Eq. (5.79). The numerical results obtained in [22] for  D 0:1

are shown in the left panel of Fig. 5.7. As expected Eq. (5.79) describes accurately
the relation between the Higgs and the resonances masses in the regions in which
one state is significantly lighter than the others. On the other hand, when the T�
and QT� masses are comparable sizable deviations from Eq. (5.79) can occur. These
are due to the possible presence of a relatively light second level of resonances, as
already discussed.

The numerical results clearly show that resonances with a mass of the order or
below 1:5TeV are needed in order to get a realistic Higgs mass in the case  D 0:1.
The upper bound becomes 1TeV for  D 0:2. The prediction is even sharper in the
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Fig. 5.7 Scatter plot of the masses of the lightest T and QT resonances (left panel) and of the X5=3
and QT resonances (right panel) in the three-site model. The compositeness scale has been fixed to
 D 0:1. The black dots denote the points for which 115GeV � mH � 130GeV, while the gray
ones have mH > 130GeV. In the left plot the area between the solid red lines represents the range
obtained by applying the result in Eq. (5.79) for 115GeV � mH � 130GeV. The dashed blue line
corresponds to a lower bound on mT

�

due to a saturation effect. The plots are taken from [22]

case in which only one state, the QT�, is light. In this region of the parameter space
states with masses around 600GeV are needed for  D 0:1 and around 400GeV for
 D 0:2.

The result becomes even more stringent if we also take into account the masses of
the other composite resonances. As we discussed before, the first level of resonances
contains, in addition to T� and QT�, three other states: a top-like state, the X2=3�, a
bottom-like state, the B�, and an exotic state with charge 5=3, the X5=3�. the X5=3�
can not mix with any other state, even after EWSB, and therefore it remains always
lighter than the other particles in the fourplet.12 The scatter plot for the masses of the
X5=3� and QT� states is shown in the right panel of Fig. 5.7. In the parameter space
regions with realistic Higgs mass, the X5=3� resonance can be much lighter than the
other states, especially in the configurations in which the T� and QT� have compara-
ble masses. In these points the mass of the exotic state can be as low as 300GeV.

Calculability in the Two-Site Model

We saw in Sect. 5.1 that the three-site model provides an effective description of
a composite Higgs in which the Higgs potential is calculable at one-loop order.
This property allowed us to decouple the UV physics and fully characterize the
model in terms of the parameters describing the elementary states and a small set of
composite resonances.

If we accept to give up a complete predictivity, however, the much simpler two-
site construction can be used to describe the low-energy dynamics of a composite

12Some approximate expressions for the masses of the resonances can be found in [13]. For a
discussion of the details of the spectrum see also Chap. 6.
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Higgs and of just one level of composite partners. As we saw, in this set-up the
Higgs potential becomes logarithmically divergent at one loop. There is however an
interesting property which partially preserves predictivity. For simplicity let us focus
on the fermionic contribution from the top partners, which dominates the Higgs
potential. As shown in Sect. 5.1.4 only the leading terms in the expansion in powers
of the elementary/composite mixings can develop a logarithmic divergence. These
terms have a fixed dependence on the Higgs VEV, namely they only depend on
sin2.H=f / (see Eqs. (5.52) and (5.53)). As a consequence, to regulate the divergence
only one counterterm is needed, which corresponds to the renormalization of a
single parameter. An interesting possibility is to fix the value of the physical Higgs
VEV, or more precisely the v=f ratio, as a renormalization condition, obtaining the
Higgs mass as a prediction of the model. In this sense mH is predictable also in the
two-site set-up.

We will now explain a possible procedure to deal with the logarithmic divergence
and compute the Higgs potential in the two-site model. The simplest way to regulate
the Coleman–Weinberg potential in Eq. (5.66) is to introduce a hard cut-offƒ. With
this prescription we obtain the standard formula

V.H/ D � Nc

8�2
ƒ2
X

i

m2
i .H/�

Nc

16�2

X
i

m4
i .H/

�
log

�
m2

i .H/

ƒ2

�
� 1
2

	
: (5.83)

In the two site model only a logarithmic divergence appears in the Higgs potential
and therefore the quadratically divergent term must be independent of the Higgs
VEV. This is ensured by the condition

X
i

m2
i .H/ D

X
i

m2
i .H D 0/ D const: ; (5.84)

which holds in the multi-site constructions as can be explicitly verified.13 As
discussed above, the logarithmic divergence is proportional to sin2.h=f /, and this
implies the relation

X
i

m4
i .H/ / sin2.H=f /C const: (5.85)

We can therefore cancel the divergence by introducing a single counterterm
proportional to

X
i

m4
i .H/

�
log

�
ƒ2

�2

�
� 1
2

	
; (5.86)

13If, as in the three-site case, the Higgs potential is completely finite at one loop, an analogous
condition holds for the logarithmic term, i.e.

P
i m4

i .H/ D P
i m4

i .H D 0/ D const:
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which depends on one free renormalization parameter, namely the scale �. The
renormalized potential thus takes the form

V.H/ D � Nc

16�2

X
i

m4
i .H/ log

�
m2

i .H/

�2

�
: (5.87)

To compute the Higgs potential we then need to choose a renormalization condition
that fixes the parameter�. A convenient choice is to fix the position of the minimum
of the potential to the required value of v=f . In this way the potential is completely
determined and can be used to extract a prediction for the Higgs mass.

It is interesting to notice that, as shown in [22], the approximate relation in
Eq. (5.79) between the Higgs mass and the masses of the top partners is valid also
in the two-site model. Of course in this case one needs to identify the T� and QT�
states with the only level of resonances included in the model.

5.2.2 The 14 C 1 Model

The second scenario we consider is a representative of the class of minimally tuned
models. This class of models is characterized by the fact that the right-handed top
component is fully composite and is identified with one chiral resonance coming
from the composite dynamics. In order to implement this assumption we need to
slightly modify the fermionic sector of three-site construction as we will show in
the following.

As an explicit example we will consider the case in which the elementary qL

doublet is embedded in the 14 representation of SO.5/. The tR, instead, is a total
singlet. Under the U.1/X group the qL and tR fields as well as the composite top
partners have charge 2=3.14

The Structure of the Model

The global symmetry structure of the model is exactly equal to the one of the
three-site construction and the gauge sector coincides with the one described in
Sect. 5.1.3. The fermionic sector requires instead a few changes. First of all we
embed the elementary doublet qL in the 14 representation of SO.5/. A suitable basis
for this representation is given by symmetric traceless 5 � 5 matrices. Under the

14The reader is referred to [25] for an implementation of the same setup in the framework of 5-d
holographic models.
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Fig. 5.8 Pictorial representation of the matter sector of the three-site 14C 1 model

SO.4/ ' SU.2/L � SU.2/R subgroup they decompose as 14 D 9 ˚ 4 ˚ 1 D
.3; 3/˚ .2; 2/˚ .1; 1/. The explicit form of the SO.4/ multiplets is
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(5.88)

The elementary qL is embedded in the .2; 2/ multiplet, in particular in the doublet
with T3R D �1=2, analogously to what we did in the case of the representation 5
(the explicit form of the embedding QL is given in Eq. (2.138)). The qL multiplet is
associated to the leftmost site and formally transforms under the SO.5/1L symmetry.

The composite sector now contains the  and Q fields in the 14 representation
and the tR as an SO.5/ total singlet. The  field is associated to the middle site and
transforms under the SO.5/1R symmetry. The Q field belongs to the rightmost site
and transforms under the SO.5/2R subgroup. The tR field, being now composite, is
associated to the rightmost site as well. The moose representation of the fermionic
sector of the model is shown in Fig. 5.8. The Lagrangian for the composite states
reads

Lcs D Tr
�
i ��D� � m  



C TrŒi Q ��D�
Q � Qmˆ

Q̂‰ � QmQ QQ QQ � QmT QT QT�
C itR�

�D�tR � TrŒmRTR QTL C h:c:�

� �TrŒUT
2  U2 Q �C h:c: ; (5.89)

where we denoted by Q̂ , QQ and QT respectively the 9, 4 and 1 components of the Q 
multiplet, while TR denotes the embedding of the tR field into the singlet component
of the 14 representation. The Lagrangian for the elementary states, including the
elementary/composite mixing, is given by

LelCmix D iqL�
�D�qL � yLf TrŒUT

1 QLU1 �C h:c: (5.90)
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Phenomenological Properties

To understand the phenomenological properties of the 14C 1 model it is useful to
start from a comparison with the 5C5 set-up. As we discussed at length, in the latter
model there is a tight connection between the Higgs mass and the spectrum of the
light top partners. In the previous sections we derived this result by a careful analytic
approach, there is however a simpler, although less rigorous, way to understand this
connection which can be easily extended to other models.

Let us start from the simplest description of the 5 C 5 model, namely the non-
linear �-model SO.5/=SO.4/ plus the elementary bosonic and fermionic sources.
As shown in Sect. 3.3.1, in this set-up only one independent operator contributes
to the Higgs potential at leading order in the elementary/composite mixings. This
operator is quadratically divergent at one loop, however it has a fixed dependence on
H=f , namely sin2.H=f /, thus it introduces a strong sensitivity to the UV dynamics
only in the ˛ coefficient in Eq. (5.72). On the contrary, the operators contributing
to the sin4.H=f / terms, which control the Higgs quartic coupling and ultimately
the Higgs mass, start to be generated at quartic order in the mixings and are
only logarithmically divergent. As a consequence the ˇ coefficient in the Higgs
potential has a very mild dependence on the UV dynamics, i.e. on the details of
the top partners spectrum. The correlation between the ˇ coefficient and the mass
of the ligtest top partners is not generated directly, instead it comes indirectly
from the size of the elementary/composite mixings which is fixed by the top mass.
At fixed ytop, indeed, the yL;R mixings are related to the mass of the lightest top
partners as shown in Eq. (5.81) and this determines the tight connection between
the Higgs mass and the top partners spectrum. This peculiar structure explains the
robustness of this connection and its independence from the details of the explicit
models.

The situation is totally different for the 14 C 1 model. The 14 representation
decomposes into three SO.4/multiplets and gives rise to two independent invariants
at the leading order in the elementary/composite mixings. The two operators
have a different dependence on H=f , thus their quadratic divergence at one loop
implies a strong dependence of the Higgs potential on the details of the top
partners spectrum. In particular the Higgs mass will not be any more determined
only by the lightest top partners, but instead it will depend on a larger set of
resonances.

As shown in Chap. 3, the power counting estimates can be used to derive a
relation (Eq. (3.120)) between the Higgs mass and the overall fermion mass scale
m D g f

mH '
r

Nc

2�2
ytg v ' 500GeV

�g 
5

�
; (5.91)

where yt is the top Yukawa. It is important to stress that in the above formula m 

does not denote the mass of the lightest top parters, instead it must be interpreted as
an “average” mass of the first level of fermionic resonances. Moreover, as clear from
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Fig. 5.9 Left panel: scatter plot of the Higgs mass as a function of g for  D 0:1 in the 14 C 1

three-site model. Right panel: scatter plot of the mass of the lightest fermionic resonance as a
function of the Higgs mass. The red lines show the estimate of the Higgs mass with yL D yt

(solid), yL D p
2=5yt (dot-dashed) and yL D 4yt (dotted). The choice yL D 4yt corresponds to the

largest value for yL used in the scan. The black dots correspond to the points with yL � yt, while
the gray ones have yL > yt. The plots are taken from [23]

the above discussion, in the 14C 1model large departures from the power-counting
estimates are possible. For instance, this can happen if accidental cancellations are
present in the Higgs potential.

The relation between the Higgs mass and the fermionic mass scale is reasonably
well verified in the explicit three-site model, although a significant amount of spread
is present (see left panel of Fig. 5.9) [23].15 The origin of the spread is mainly due
to the relation between the top mass and the elementary/composite mixing yL. In
a model with fully composite tR one generically expects yL ' yt, however order-
one corrections can be present. By using an approximate analytic expression for the
top mass one can find a lower bound on the value of yL needed to reproduce the
correct mt

yL &
r
2

5
yt ' 0:6 : (5.92)

Although the above inequality can be saturated, in a large part of the parameter
space some cancellation occurs and a value of yL significantly larger than the
minimal one is required. The spread on yL determines a corresponding spread in
the relation between the Higgs mass and the fermion scale g . If this effect is taken
into account16 the agreement between the general estimate and the numerical results
becomes quite good.

From the general estimates and the numerical results it is easy to see that there
are only two possibilities to get a realistic Higgs mass: considering the region of

15The mass scale of the resonances m has been identified in the scan with the quadratic average
of the fermion mass parameters present in the composite sector Lagrangian.
16For this purpose it is sufficient to replace yt with yL in Eq. (5.91).
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the parameter space in which all the fermionic resonances are light (g . 2), or
allow some extra tuning which cancels the overall size of the effective potential.
The amount of tuning required has been estimated in Chap. 3.

As a final point we discuss the connection between the Higgs mass and the
presence of light top partners. As we discussed before, in the 14C 1 model a strict
relation between the Higgs mass and the masses of the lightest fermionic resonances
does not exist. Given that many resonances determine the Higgs potential it is
possible to obtain a cancellation in the Higgs mass, by means of tuning, even if all
the resonances are heavy. This can be seen explicitly in the right panel of Fig. 5.9,
where a scatter plot for the mass of the lightest fermionic resonance is shown as a
function of the Higgs mass. For a realistic Higgs mass the resonances can be much
heavier than the typical masses required in the 5C 5 model, mlightest . 1:5TeV for
 D 0:1 (see Fig. 5.7). The plot shows nevertheless a preference for light states,
obviously due to the lower degree of tuning associated to a smaller value of g . The
numerical result shows that, at the price of tuning, resonances as heavy as 4TeV can
be obtained with a light Higgs.

5.3 The Weinberg Sum Rules

In the previous sections we addressed in a constructive manner the problem of
finding a calculable effective description of the composite Higgs scenarios. Our
approach was to add to the simple non-linear �-model some extra symmetries which
could protect the Higgs potential thanks to a collective breaking mechanism. In
this section we want to consider the problem from a different perspective, namely
we want to understand what kind of information we can get about an effective
description of the composite scenario by requiring that the Higgs potential is
calculable without introducing by hand any additional symmetry. As we will see, the
requirement of calculability is strong enough to imply some stringent constraints of
the structure of the effective theory. In particular, at least in the simplest realization
of the composite Higgs scenario, a structure analogous to a multi-site model is
always needed to ensure the finiteness of the Higgs potential.

5.3.1 The General Effective Lagrangian

For simplicity in our analysis we will only focus on the femionic part of the
theory and in particular on the states belonging to the top sector. For definiteness,
we will also assume that the elementary fermions qL and tR are embedded in
(incomplete) multiplets in the fundamental representation of SO.5/. With this
choice the elementary fermions can only mix directly to composite resonances
that transform as fourplets  i

4 or singlets  i
1 under the unbroken SO.4/ symmetry.

We can now construct the most general effective Lagrangian by using the CCWZ
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formalism. The kinetic terms for the elementary and composite states are given by
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For simplicity, in writing the above formula, we chose to work in the basis
in which the mass matrices for the composite states are diagonal. NQ and NS

denote the number of fourplets and singlets included in the theory. The most
general elementary/composite mixing terms, following the partial compositeness
assumption, are given by
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where QL and TR denote the embedding of the elementary states into incomplete
SO.5/ multiplets (the explicit expressions are given in Eq. (5.45)) and U is the
Goldstone matrix. The 4 and 1 subscripts in the expressions .QLU/4;1 and .TRU/4;1
denote respectively the fourplet and singlet component.

5.3.2 The Higgs Potential and the Weinberg Sum Rules

As a preliminary step for the computation of the fermion contribution to the Higgs
potential it is useful to derive the effective Lagrangian for the elementary top quark.
This can be done by integrating out the composite states  i

4 and  i
1. The final result

written in momentum space can be expressed as

Leff D tL =p…LtL C tR =p…RtR � .tL…LRtR C h:c:/ : (5.95)

The form factors are given by
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where
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The fermion contribution to the Higgs potential at one loop can be expressed in
terms of the form factors that appear in the top effective Lagrangian:

V.H/ D �2Nc
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where we rotated the integration variable in Euclidean space.
Similarly to what we did in the case of the multi-site models we can expand the

potential in a series in sin.H=f /:

V.H/ ' ˛ sin2.H=f /C ˇ sin4.H=f / : (5.99)

The ˛ and ˇ coefficients can be easily extracted from the expression of the potential
and read17
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(5.100)

We can now analyze the behavior of the integrands at large p2 with the aim of
determining the UV divergent contributions. From the explicit expressions it is easy
to see that for large Euclidean momenta …0

L;R � p0, …1
L;R � p�2 and …0

LR � p�2.
It follows that the terms involving …0

LR are all finite. Analogously, all terms of
order higher than four in the sin.H=f / expansion are UV finite. The only divergent
contributions come from the …1

L;R form factors. In particular the ˛ coefficient is

17The integral in the expression for ˇ has a spurious IR divergence arising from the expansion of
the potential. It can be cured by inserting a small IR cut-off on the integration domain. Given that
we are interested only in the UV behavior we will ignore this subtlety.
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quadratically divergent, whereas ˇ is only logarithmically divergent, in agreement
with the results of our previous analyses.

To ensure the calculability of the Higgs potential we can impose a set of sum rules
on the integrands in Eq. (5.100) demanding that ˛ and ˇ are finite [26, 27]. These
sum rules are analogous to the Weinberg sum rules in QCD [28], which constrain
the behavior of the spectral functions of the axial and vector currents by interpreting
them as the result of the exchange of weakly coupled mesonic resonances. The
cancellation of the logarithmic divergence in ˇ requires

lim
p2!1

�1
f 2

p2
…1

R.�p2/

…0
R.�p2/

D
NSX

iD1

ˇ̌
yi

R1

ˇ̌2 �
NQX
iD1

ˇ̌
yi

R4

ˇ̌2 D 0 ;

lim
p2!1

2

f 2
p2
…1

L.�p2/

…0
L.�p2/

D
NSX

iD1

ˇ̌
yi

L1

ˇ̌2 �
NQX
iD1

ˇ̌
yi

L4

ˇ̌2 D 0 :
(5.101)

It is straightforward to check that, if the above conditions are satisfied, the quadratic
divergence in ˛ is automatically canceled. A further condition is needed to cancel
the logarithmic divergence in ˛:

lim
p2!1

2

f 2

�
…1

R.�p2/

…0
R.�p2/

C …1
L.�p2/

…0
L.�p2/

�

D 2
NSX

iD1
m2
1i

�jyi
R1j2 � jyi

L1j2
� �

NQX
iD1

m2
4i

�jyi
R4j2 � jyi

L4j2
� D 0 : (5.102)

The conditions in Eq. (5.101) have a very simple interpretation. The linearity of
the mixing between the elementary and the composite states (see Eq. (5.94)) implies
that each elementary field is only mixed with one linear combination of composite
fourplets and one linear combination of the singlets. By a field redefinition in
the composite sector we can thus go to a basis in which yi

L;R D 0 for i � 2

and only the y1L;R mixings are non-vanishing both for the fourplet and singlet
components. Of course in the new basis the mass matrix of the composite states
is in general non-diagonal. The sum rules in Eq. (5.101) can now be rewritten
as

jy1R1j2 D jy1R4j2 and jy1L1j2 D jy1L4j2 : (5.103)

By a redefinition of the phases of the fields we can always choose

y1R1 D y1R4 � yR and y1L1 D y1L4 � yL : (5.104)
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The Lagrangian with the elementary/composite mixing in the new basis reads

Lmix D yRf
�
TRU

�
1
 11L C yRf

�
TRU

�
4
 14L C h.c.

C yLf
�
QLU

�
1
 11R C yLf

�
QLU

�
4
 14R C h.c.

D yRf TRU 1L C yLf QLU 1R C h.c. ; (5.105)

where  1L is obtained by joining the fourplet and singlet fields  1L1 and  1R1 to
form a multiplet in the fundamental representation of SO.5/ and analogously for
 1R. The mixing Lagrangian in Eq. (5.105) exactly coincides with the one we
considered in the two-site model (see Eq. (5.44)) once we identify  1 with Q and
U with the U Goldstone matrix (in the gauge in which only the Goldstone Higgs
modes are present). This result shows that the only extension of the basic non-
linear �-model in which the Higgs mass is calculable necessarily has a two-site
structure.

Let us now consider the additional condition in Eq. (5.102) which ensure the
cancellation of the logarithmic divergences. Taking into account the result in
Eq. (5.104) we get

2
h�

M

1M1

�
11
� �M


4M4

�
11

i
y2R �

h�
M1M



1

�
11
� �M4M



4

�
11

i
y2L D 0 ; (5.106)

where M4 and M1 denote the mass matrices in the composite sector, namely Lmass DP
ij  

i
4L.M4/ij 

j
4R C

P
ij  

i
1L.M1/ij 

j
1R C h.c. Similarly to what we did for the first

Weinberg rum rules, we can simplify the condition in Eq. (5.106) by a change of
basis in the composite sector. Given that the mass mixing terms between the  14;1
fields and the other resonances are linear in  14;1, we can always redefine the  i

4;1

fields with i � 2 in such a way that  1 has mass mixing only with  24;1. In this basis

the sum rule in Eq. (5.106) depends only on the  14;1 masses, m.1/
4;1 

1

L4;1 
1
R4;1, and on

the mass mixing terms with  24;1, m.12/
4;1  

1

L4;1 
2
R4;1 C h.c. and m.21/

4;1  
2

L4;1 
1
R4;1 C h.c.

In the new basis the sum rule in Eq. (5.106) becomes

2
hˇ̌

m.1/
1

ˇ̌2 C ˇ̌m.21/
1

ˇ̌2 � ˇ̌m.1/
4

ˇ̌2 � ˇ̌m.21/
4

ˇ̌2i
y2R

�
hˇ̌

m.1/
1

ˇ̌2 C ˇ̌m.12/
1

ˇ̌2 � ˇ̌m.1/
4

ˇ̌2 � ˇ̌m.12/
4

ˇ̌2i
y2L D 0 ; (5.107)

Of course, given the large number of free parameters there is no unique solution
to the above equation. If we require Eq. (5.107) to be satisfied for arbitrary values
of the elementary/composite mixings yL and yR the possible solutions are limited.
A natural way to satisfy the sum rule is to assume that the relevant mass terms
respect an SO.5/ symmetry under which  1 and  2 transform in the fundamental
representation. This structure ensures the relations m.1/

1 D m.1/
4 , m.12/

1 D m.12/
4



References 227

and m.21/
1 D m.21/

4 and provides a solution for Eq. (5.107). Notice that the SO.5/
assumption is automatically realized in the three-site construction.
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Chapter 6
Collider Phenomenology

In this chapter we focus on the phenomenology of the composite resonances. Due
to their ubiquitous presence and their tight connection with the Higgs and Electro-
Weak (EW) dynamics, these states are one of the primary targets to directly test the
composite Higgs scenarios in collider experiments.

Two main classes of composite states are generically present. The first one
includes the fermionic partners of the Standard Model (SM) matter fields, which
are responsible for generating the SM Yukawa couplings. At the same time, these
resonances give rise to the leading contributions to the Higgs effective potential,
thus triggering EW symmetry breaking. The second class of composite resonances
includes the vector states related to the global symmetry of the composite dynamics,
which can be considered as the partners of the SM gauge fields.

For definiteness, in our discussion we will focus on the standard anarchic flavor
scenario presented in Chap. 4. In this set-up the most relevant collider signatures are
due to the quark partners. As we will see in Sect. 6.1, being the lightest composite
states, the quark partners have a particularly simple phenomenology which is
almost completely fixed by their quantum numbers under the global symmetry of
the composite sector. The vector resonances, on the other hand, are less directly
involved in the tuning issue and are usually heavier than the fermionic partners.
Their collider phenomenology can be significantly affected by the details of the
composite dynamics and, in particular, by the presence of light fermionc states. We
will discuss this topic in the second part of the chapter (Sect. 6.2).

6.1 Fermionic Resonances

We start our discussion by analyzing the collider phenomenology of the fermionic
resonances. In particular we focus on the properties of the top partners, i.e. the
composite states responsible for generating the top mass. As we explained in
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Chap. 3, these states are unavoidably present in all minimal composite Higgs
scenarios and are required to be relatively light in all the models that aim to solve
the hierarchy problem. This feature makes the top partners the privileged channel to
probe the minimal composite Higgs frameworks in collider experiments.

It is important to stress that, from the point of view of the collider phenomenol-
ogy, the concept of top partner can be extended to any vector-like fermionic
resonance that has sizable mixing only with the third-generation SM quarks,
independently of any connection with Naturalness or with the generation of the
top mass. In fact, any such state shares the same phenomenological properties of the
“canonical” top partners and gives rise to analogous collider signatures. Notice that,
as we explained in Chap. 4, in the anarchic flavor scenario all the quark partners
have sizable couplings to the top sector, thus they can be considered as top partners.

As can be easily understood, in a large class of scenarios the main collider
signatures are determined by the lightest composite resonances. The heavier states,
due to the smaller production cross section, usually play a marginal role and can
be neglected in a first approximation. This feature allows to study the collider
phenomenology of the top partners by only focusing on a small set of resonances,
thus simplifying the analysis and making it more model-independent. It is important
to mention that the top-partner dynamics can also be affected by the presence of
composite vector resonances, which can contribute to their production cross section.
We postpone a discussion of the interplay between vector and fermionic resonances
to Sect. 6.2. In this section, instead, we focus exclusively on the fermionic states and
we assume that the vector resonances are heavy enough so that they have a small
impact on the collider phenomenology.

A possible way to parametrize the dynamics of the fermionic partners is provided
by the multi-site models discussed in Chap. 5. This approach allows at the same time
to describe the phenomenology of the resonances and to relate their properties to the
Higgs dynamics and to the EW observables. The multi-site constructions thus offer
a straightforward way to take into account simultaneously the implications of the
direct searches and of the indirect experimental constraints, as for instance the EW
precision tests.

In this chapter, however, we want to focus only on the collider phenomenology
of the partners and we prefer to adopt a simpler and more model-independent
approach, which allows to avoid spurious effects related to specific explicit con-
structions. Following [1, 2], we will thus parametrize the dynamics of the to
partners by the most generic effective Lagrangian compatible with the non-linearly
realized Goldstone symmetry. We will not require any extra assumptions, as for
instance the full calculability of the EW and Higgs observables, which is one of
the main ingredients of the multi-site models. General effective Lagrangians for the
composite resonances can be constructed by using the CCWZ formalism presented
in Chap. 2. To simplify the analysis we will include in the effective models only
a minimal set of resonances, which should be interpreted as the lightest fermionic
partners. As a last ingredient, we will use the power-counting discussed in Chap. 3
to define a leading Lagrangian and estimate the relevance of additional higher-order
operators.
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6.1.1 The Effective Parametrizations

As a first step we present the effective Lagrangians of the simplified models for
the top partners. As we did in the rest of these Notes, we restrict our attention to
the class of minimal composite Higgs realizations based on the symmetry pattern
SO.5/=SO.4/.

In the following we consider three simplified models that are representative of
a large fraction of the explicit theories explored so far in the literature. The first
one is based on the standard partial compositeness set-up (see Chap. 2), in which
all the SM fermions have an elementary counterpart. In particular we focus on the
scenario in which the elementary fermions are mixed with composite operators in
the fundamental SO.5/ representation. This choice reproduces the phenomenology
of a large class of “minimal composite Higgs models” (in particular the holographic
MCHM5 constructions [3]) and is closely related to the 5 C 5 phenomenological
model presented in Sect. 5.2.1. The other two simplified models are based on a
slight modification of the classical partial compositeness set-up in which the tR
field is fully composite and is identified with a chiral state coming from the strong
dynamics. Two models of this kind will be considered, in which the qL elementary
doublet mixes with operators in the fundamental SO.5/ representation and in the
14 respectively. The first choice is motivated by minimality, whereas the second
is related to Naturalness considerations. In fact, as we explained in Chap. 3, the
models with a fully composite tR and resonances in the 14 representation minimize
the amount of tuning needed to get a realistic Higgs mass. The simplified model
based on the 14 representation, moreover, describes the collider phenomenology of
the explicit 14C 1 construction presented in Sect. 5.2.2.

The 5 C 5 Model

The first model we consider is the one based on the usual partial compositeness
assumption, in which the SM multiplets, qL and tR, are realized as elementary fields.
As we already anticipated, we assume that the composite operators that mix with the
elementary fields transform in the fundamental representation of SO.5/, the 5. Due
to the connection with the phenomenological model of Sect. 5.2.1 we will denote
this simplified scenario as the 5C 5 model.

Under the unbroken SO.4/ symmetry, the representation 5 decomposes as 5 D
4˚1. Thus, in this model, the top partners transform as fourplets and singlets under
SO.4/. In our simplified description we will include only one layer of composite
resonances, namely one SO.4/ fourplet and one singlet.

The leading effective Lagrangian can be written as a sum of three terms
containing the dynamics of the composite states, of the elementary ones and the
mixing terms:

L D Lcomp C Lelem C Lmix : (6.1)
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The Lagrangian for the composite fermions contains the usual kinetic and mass
terms and an interaction term between the fourplet and the singlet that involves the
d-symbol operator:

Lcomp D i 4 =D 4 C i 1 =D 1 � m4 4 4 � m1 1 1

�
�

i cL  
i
4L�

�di
� 1L C i cR 

i
4R�

�di
� 1R C h:c:

�
; (6.2)

where  4;1 denote the composite fourplet and singlet. The covariant derivatives for
the composite fermions are given by

D� 4 D
�
@� � 2

3
ig0B� � ie� � igsG�

�
 4 ; (6.3)

D� 1 D
�
@� � 2

3
ig0B� � igsG�

�
 1 ; (6.4)

where G� denotes the gluon field and gs is the SU.3/c coupling. In the above
formulae d� and e� denote the CCWZ symbols defined in Eq. (2.69) (their explicitly
expressions are given in section “Explicit CCWZ for SO.5/=SO.4/” in Appendix
in Chap. 2). In terms of fields with definite SO.4/ ' SU.2/L � SU.2/R quantum
numbers, the fourplet  4 decomposes as

 4 D 1p
2

2
664
�iBC i X5=3
�B � X5=3
�i T � i X2=3

T � X2=3

3
775 : (6.5)

The four components of the multiplet correspond to two SU.2/L doublets, .T;B/ and
.X5=3;X2=3/, with hypercharges 1=6 and 7=6 respectively. The first doublet has the
same quantum numbers as the elementary qL doublet, while the second one contains
an exotic state, the X5=3, with charge 5=3 and a top-like state, the X2=3, with charge
2=3. The singlet  1 has the same quantum numbers of the tR SM field. To make
contact with the notation of Sect. 5.2.1, we also denote this resonance by QT .

The Lagrangian for the elementary fermions is given by the usual kinetic terms

Lelem D i qL =DqL C i tR =DtR (6.6)

where the covariant derivatives coincide with the SM ones

D�qL D
�
@� � igWi

�

� i

2
� i
1

6
g0B� � igSG�

�
qL ; (6.7)

D�tR D
�
@� � i

2

3
g0B� � igSG�

�
tR : (6.8)
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The mixing between the elementary and composite states is described by

Lmix D yL4f
�
q5

LU
�

i 
i
4 C yL1f

�
q5

LU
�
5
 1 C h:c:

C yR4f
�
t5
RU
�

i
 i
4 C yR1f

�
t5
RU
�
5
 1 C h:c: ; (6.9)

where the index i takes the values i D 1; : : : ; 4. The embedding, q5
L and t5

R, of
the elementary states in incomplete fundamental representations of SO.5/ has been
already given in the previous chapters, we rewrite it here for completeness1

q5
L D

1p
2

2
666664

�i bL

�bL

�i tL
tL
0

3
777775
; t5

R D

2
666664

0

0

0

0

tR

3
777775
: (6.10)

Notice that, as explained in Chap. 5, in order to accommodate the correct hyper-
charges for the SM fermions an extra U.1/X subgroup must be included. Under this
symmetry the elementary fields qL and tR as well as all the composite multiplets
have charge 2=3.

The complete effective Lagrangian contains 8 free parameters, namely the 4
elementary/composite mixings yL4;1 and yR4;1, the masses of the composite states,
m4;1, and the coefficients of the d-symbol interactions cL;R. All these coefficients
are in general complex. Five complex phases can be removed by suitable field
redefinitions but the remaining ones are physical and can not be eliminated. For
simplicity, however, we assume that the strong sector is invariant under CP, in this
way all the parameters in the Lagrangian are real.

Let us now discuss the natural size of the parameters. The d-symbol term is a
purely strong sector interaction, thus its coefficient is expected to be of O.1/. The
elementary/composite mixings, on the other hand, are external with respect to the
strong dynamics, thus their size is not fixed by the power counting. The partial
compositeness paradigm, however, implies that the mixing of an elementary states
to the composite fourplet and singlet are correlated. In the usual set-up, indeed,
both terms are mainly generated from the mixing of the elementary fields with only
one composite operator in a complete SO.5/ representation (see Sect. 2.4), thus we
expect yL4 � yL1 and yR4 � yR1. The exact value of the mixings is determined by
the requirement of reproducing the correct top mass.

It is interesting to notice that the simplified model we presented so far almost
coincides with the fermionic sector of the two-site model discussed in Chap. 5.

1In order to avoid confusion with the notation used for the composite states, we denote the
embedding of the elementary fields in the fundamental SO.5/ representation by q5

L and t5
R, and

not by QL and TR as in the previous chapters. Later on we will adopt an analogous notation for the
embedding in the 14.
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Indeed, it is straightforward to check that the Lagrangian obtained by integrating
out the vector resonances in the two-site 5 C 5 model is equal to the simplified
model of this section for the following choice of the parameters:

yL4 D yL1 � yL ; yR4 D yR1 � yR ; cL D cR D 0 : (6.11)

In the two-site model the relation between the elementary/composite mixings is
dictated by the global symmetry structure and is essential to realize the collective
breaking mechanism which protects the Higgs potential. In the two-site set-up
the d-symbol term in Eq. (6.2) is only generated through non-nearest neighbor
interactions, it is thus suppressed with respect to the general power-counting
estimate (see Sect. 5.1.6). In extended multi-site models, on the other hand, the
d-symbol operator can arise as an effective interaction mediated by heavy vector
resonances associated to the SO.5/=SO.4/ coset and its expected size follows the
usual power-counting.

The Mass Spectrum

We can now analyze the spectrum of the fermionic resonances. The mass matrix of
the charge 2=3 states after EWSB has the simple form

2
6664
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3
7775

T

2
6666666664

0
yL4 f

2
.1C c"/

yL4 f

2
.1 � c"/

yL1fp
2

s"

� yR4fp
2

s" �m4 0 0

yR4fp
2

s" 0 �m4 0

yR1 fc" 0 0 �m1

3
7777777775

2
6664

tR
TR

X2=3R

QTR

3
7775 ;

(6.12)

where we defined " � hhi=f , while s" and c" denote the sine and cosine of ". For
completeness we also report here the relation between � and the EWSB scale v:

 D v2

f 2
D sin2 � : (6.13)

For small values of  the approximate relation  ' �2 is valid with good accuracy.
An interesting feature of the mass matrix in Eq. (6.12) is the fact that the

dependence on the Higgs VEV appears only in the terms that mix the elementary
and the composite states. This shows that all the effects due to EWSB are necessarily
weighted by the elementary/composite mixings. As explained at length in Chap. 2,
this feature is a consequence of the Goldstone nature of the Higgs and, as we will
see, implies a very peculiar structure for the spectrum of the resonances.
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The mass matrix for the charge 2=3 states can not be exactly diagonalized in
closed analytic form. However one can find some approximate formulae for the
masses of the resonances by using an expansion in . The expression for the top
mass is

m2
top D

.yL1yR1m4 � yL4yR4m1/
2 f 4

.m2
4 C y2L4f

2/.m2
1 C y2R1f

2/



2
CO

�
f 22

�
; (6.14)

while the masses of the heavy resonances are

mX2=3 D m4

�
1C y2R4f

2

4m2
4

 C   
	
; (6.15)

mT D
q

m2
4 C y2L4f

2

�
1 � .y

2
L4 � y2R4/f

2

4m2
4

 C   
	
; (6.16)

mQT D
q

m2
1 C y2R1f

2

�
1C .y2L1 � 2y2R1/f

2

4m2
1

 C   
	
; (6.17)

where, inside the square brackets, we only kept the leading order terms in an
expansion in the elementary/composite mixings and in . In the above formulae
we denoted each mass eigenstate by the same names of the states with definite
SO.4/ quantum numbers. Of course this identification is valid only as long as
the elementary/composite mixings are smaller than the mass parameters in the
composite sector and the fourplet states are not close in mass to the singlet. If
these conditions are satisfied, in the limit of small , each mass eigenstate is
approximately aligned with one field in the original basis, otherwise the above
expressions for the masses of the resonances are still approximately valid but
the mass eigenstates have sizable components along states with different SO.4/
quantum numbers.

Let us now consider the states with charge �1=3. For simplicity, in the effective
model we do not include a right-handed bottom component because its mixing
with the composite dynamics is typically small and it does not significantly modify
the collider phenomenology. Therefore the bL state remains in the spectrum as a
massless field. In addition to the bL, the model also contains a heavy B whose mass
is given by

mB D
q

m2
4 C y2L4f

2 : (6.18)

This formula is exact and does not receive corrections after EWSB. In fact the mass
matrix of the charge �1=3 states in the 5C 5 model does not depend on the Higgs
VEV.

The heavy B forms a nearly-degenerate SU.2/L doublet with the T resonance. By
comparing Eqs. (6.16) and (6.18) one finds that the mass difference between the two
states is of order �m2 � y2v2, where y denotes the typical size of the yL4 and yR4
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mixings. Notice that the lightest state inside the doublet can be either the T or the B
depending on the values of the elementary/composite mixings.

The exotic state X5=3 is the only field with electric charge 5=3 in the model, thus
it can not mix with any other state. Its mass is simply given by the fourplet mass
parameter mX5=3 D m4. This state forms an approximate SU.2/L doublet together
with the X2=3 resonance. The spitting between the two states is of order �m2 �
y2R4v

2 and the lightest state in the doublet is nearly always the X5=3 resonance.2

By comparing the masses of the two approximate SU.2/L doublets we find that
the splitting inside each doublet is typically much smaller than the mass difference
between the two multiplets. As we saw before, the splitting inside the doublets is
generated only after EWSB and is thus proportional to the Higgs VEV. On the other
hand, the mass difference between the two doublets is induced by the mixing with
the elementary qL. This effect is present even before EWSB and induces a split of
order �m2 � y2L4f

2, which is enhanced by a factor 1= � 1 with respect to the
mass split inside the doublets. The structure of the mass spectrum of the resonances
coming from the fourplet is schematically shown in the left panel of Fig. 6.1.

Notice that the peculiar structure of the spectrum is a consequence of the
Goldstone nature of the Higgs. In a model in which the Higgs is a generic composite
resonance but not a Goldstone there is no particular structure in the mass spectrum
and the splitting among all the states in the fourplet is typically of the same order.

Fig. 6.1 Typical mass spectrum of the fourplet states. The left panel corresponds the scenario with
an elementary tR (the 5C 5 model), while the right panel to the set-ups with a fully composite tR

(the 5C 1 and 14C 1 models)

2The X2=3 can be the lightest resonance inside the fourplet due to level-repulsion effects if the
singlet and fourplet are close in mass. In this case, however, the lightest charge 2=3 state is not
purely the X2=3, but contains a large admixture of the QT .
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The 5 C 1 Model

In the second simplified model we consider, the right-handed top component tR is
identified with a fully composite chiral state coming from the strong dynamics. As
in the previous model, the elementary doublet qL is assumed to mix with composite
operators in the fundamental representation of SO.5/. In analogy with the previous
model, we denote the present set-up by 5C 1, where the two numbers correspond
to the SO.5/ representations in which the SM fields are embedded.

The Lagrangian for the composite states, which now include also the tR identified
with a total SO.5/ singlet, is given by

Lcomp D i 4
=D 4 C i 1

=D 1 C i tR =DtR � m4 4 4 � m1 1 1

�
�

i cL 
i
4L�

�di
� 1L C i cR 

i
4R�

�di
� 1R C h:c:

�

�
�

i ct 
i
4R�

�di
�tR C h:c:

�
: (6.19)

In the above equation we did not include a possible mass mixing involving the tR
and the 1 fields. This term is allowed by the symmetry of the model, however it can
always be set to zero by a suitable field redefinition. Notice that the presence of the
tR field in the composite sector allows to write an additional d-symbol interaction
involving the fourplet  4.

The Lagrangian for the elementary doublet qL contains only the usual kinetic
term: Lelem D iqL =DqL. The mixing terms between the elementary and composite
states are given by

Lmix D yLtf .q
5
LU/5tR C yL4f .q

5
LU/i 

i
4 C yL1f .q

5
LU/5 1 C h:c: (6.20)

An important difference with respect to the case with an elementary tR is the fact
that now the top field has a direct Yukawa term which comes from the yLt mixing.

In the 5 C 1 model there are eight free parameters, which can be forced to be
real by imposing CP invariance. For simplicity we will adopt this assumption in the
following. The cL;R and ct couplings correspond to purely strong sector interactions
and their coefficients are naturally of O.1/ as can be inferred from the power
counting in Eq. (3.23). Moreover, we expect the elementary/composite mixings to
be of the same order, yLt � yL4 � yL1.
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The Mass Spectrum

Let us now discuss the features of the spectrum. As a first step we consider the
charge 2=3 fields, whose mass matrix is given by

2
6664

tL

TL

X2=3L

QTL

3
7775

T
2
6666664

yLtfp
2

s"
yL4f

2
.1C c"/
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2
.1 � c"/

yL1fp
2

s"

0 �m4 0 0

0 0 �m4 0

0 0 0 �m1

3
7777775

2
6664

tR
TR

X2=3R

QTR

3
7775 : (6.21)

It is interesting to notice that one combination of the T and X2=3 fields does not mix
with the other states, namely

X0
2=3 D

1p
2
p
1C c2"

�
.1C c"/ X2=3 � .1 � c"/ T


: (6.22)

Therefore the mass of the X0
2=3 state is just given by the composite mass m4 and is

exactly degenerate with the exotic X5=3 resonance. On the other hand, the orthogonal
combination of T and X2=3,

T 0 D 1p
2
p
1C c2"

�
.1C c"/ T C .1 � c"/ X2=3


; (6.23)

is mixed with the elementary fields and its mass acquires a shift controlled by the
yL4 parameter, plus an additional corrections due to EWSB3:

mT '
q

m2
4 C y2L4f

2

�
1 � y2L4f

2

4m2
4

 C   
	
: (6.24)

This state is close in mass to the charge �1=3 resonance coming from the fourplet,

the B, whose mass is mB D
q

m2
4 C y2L4f

2. Apart from some corner of the parameter
space, the T resonance is lighter than the B.

The spectrum of the fourplet resonances is schematically shown in the right panel
of Fig. 6.1. As one can see, the structure of the spectrum is quite similar to the one
we found in the 5C 5 model. The only difference is the fact that in the 5C 1 case
the X2=3 and the X5=3 states are exactly degenerate.

3For simplicity in the following we will drop the prime in front of the T0 and X0

2=3 resonances and
we will denote them simply by T and X2=3.
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The remaining charge-2=3 heavy state, the QT , which comes from the singlet, has a
mass given by

mQT ' m1

�
1C y2L1f

2

4m2
1

 C   
	
: (6.25)

As we discussed before, in the models with a fully composite tR a direct mixing
term between the elementary qL and the tR is present in the effective Lagrangian.
The top mass is therefore mostly determined by the yLt parameter and, at leading
order in the v=f expansion, is given by

m2
top D

1

2

m2
4

m2
4 C y2L4f

2
y2Ltf

2 CO. f 22/ : (6.26)

The 14 C 1 Model

As in the 5 C 1 model, in the third scenario we consider, the 14 C 1 model, the
right-handed top component is a fully composite chiral state. Differently from the
previous case, however, the elementary doublet qL is mixed with some composite
operators in the symmetric (the 14) representation of SO.5/. Under the unbroken
SO.4/ subgroup the symmetric representation decomposes as 14 ' 9˚ 4˚ 1. This
implies that, in addition to fourplets and singlets, the elementary states can also mix
with fermionic resonances that transform as nineplets under SO.4/.

The Lagrangian for the composite states is analogous to the one we built for
the 5 C 1 model. In particular the operators involving only the fourplet,  4, and
the singlet,  1, are exactly the same as in the previous scenario and are given in
Eq. (6.19).

The nineplet,  9, can be described by a 4 � 4 symmetric matrix. This multiplet
contains three SU.2/L triplets with different SU.2/R charges:

˚
U8=3 ; U5=3 ; U2=3

�
with TR

3 D C1 ;˚
Y5=3 ; Y2=3 ; Y�1=3

�
with TR

3 D 0 ;˚
Z2=3 ; Z�1=3 ; Z�4=3

�
with TR

3 D �1 ;
(6.27)

where the subscripts denote the electric charge. For shortness we do not give here
the embedding of the various components in the 4 � 4 matrix notation. It can be
found in [4].

The dynamics of the nineplet,  9, is described by additional kinetic and mass
terms in the composite sector Lagrangian:

L.9/comp D i Tr
�
 9 =D 9

 � m9Tr
�
 9 9


; (6.28)
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where the covariant derivative of the  9 field is defined as

D� 9 D
�
@� � 2

3
ig0B� � igsG�

�
 9 � ie� 9 C i 9e� : (6.29)

The presence of a nineplet allows some additional interaction terms containing the
d-symbol:
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�
: (6.30)

Notice that in the last line of Eq. (6.30) we included a higher-dimensional interaction
involving two powers of d�. The coefficient of this operator, following our power
counting, is expected to be suppressed by the cut-off of the effective theory, which
we identify with the mass scale of the heavy vector resonances, m�. Although
the interactions coming from the higher-dimensional operator are suppressed with
respect to the other ones, they can be important for the collider phenomenology of
the U8=3 resonance, as we will discuss in Sect. 6.1.3.

The mixing of the elementary doublet qL with the composite states is described
by the following Lagrangian

Lmix D yLt

2
f .Utq14

L U/55tR C yL9f .U
tq14

L U/ij 
ij
9

C yL4f .U
tq14

L U/i5 
i
4 C

yL1

2
f .Utq14

L U/55 1 C h:c: ; (6.31)

where q14
L now denotes the embedding of the qL doublet into the 14 representation

(compare Eq. (2.138)):

q14
L D

1p
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2
666664

0 0 0 0 �i bL

0 0 0 0 �bL

0 0 0 0 �i tL
0 0 0 0 tL
�i bL �bL �i tL tL 0

3
777775
: (6.32)

The normalization of the mixing terms in Eq. (6.31) has been chosen in such a way
that the Lagrangian for the fourplet and singlet states matches the one of the 5C 1
model in Eq. (6.20) at leading order in the v=f expansion.
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The Mass Spectrum

As one can see from the mixing terms in Eq. (6.31), analogously to the 5 C 1 set-
up, a direct Yukawa term for the top quark is present and the top mass is mostly
determined by the yLt parameter. At leading order in  it can be approximated by

m2
top D

1

8

m2
4

m2
4 C y2L4f

2
y2Ltf

2 sin2 2"CO. f 22/ : (6.33)

The spectrum of the fourplet and singlet resonances is quite similar to the one we
found in the 5C 1 model. In addition to these states now several other resonances
coming from  9 are present. We do not report here the complete mass matrix and
we only give some approximate expressions for the resonance masses.

It is clear from Eq. (6.31) that the structure of the mass matrix for the charge-2=3
states is analogous to the one in Eq. (6.21). In particular the mass matrix is diagonal
apart from the mixings of the composite states with the tL components. This implies
that the tL field is only mixed with one combination of the T and X2=3 resonances in
 4 and with one combination of the U2=3, Y2=3 and Z2=3 states coming from  9. The
masses of the orthogonal combinations, therefore, are not affected by the mixing
and by EWSB and are simply given by the composite mass parameters, m4 for the
fourplet states and m9 for the states in the 9. As in the 5 C 1 model, the fourplet
state which is mixed with the tL almost coincides with the T, we will thus denote
it with the same name, whereas we will denote the orthogonal combination as the
X2=3 state. The mass of the T resonances is approximately given by

mT '
q

m2
4 C y2L4f

2

�
1 � 5y2L4f

2

4m2
4

 C   
	
; (6.34)

while the mass of the X2=3 state is mX2=3 D m4.
Regarding the  9 states, the resonance with the largest mixing with the tL field is

the Z2=3. Its mixing is approximately twice as large as the one of the Y2=3, while the
mixing of the U2=3 arises at next order in  and is thus negligible. The mass of the
Z2=3 state can be well approximated by the formula4

mZ2=3 ' m9

�
1C 5y2L9f

2

8m2
9

 C   
	
: (6.35)

The masses of the other states are instead simply mU2=3 D mY2=3 D m9 and do
not receive corrections after EWSB. The last charge 2=3 state, the QT resonance

4For shortness we denote by Z2=3 the combination of states that mixes with the top and by Y2=3 and
U2=3 the orthogonal ones.
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contained in the singlet  1, has a mass

mQT ' m1

�
1C y2L1f

2

4m2
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 C   
	
: (6.36)

Differently from the model based on the fundamental representation of SO.5/,
in the 14C 1 scenario the resonances with charge �1=3 have some couplings with
the Higgs and receive a mass shift after EWSB. The mass of the B state contained
in the fourplet is given by

mB '
q
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4 C y2L4f

2

�
1 � y2L4f

2

2.m2
4 C y2L4f

2/
 C   

	
: (6.37)

Inside the 9 two additional states with charge �1=3 are present, namely the Y�1=3
and the Z�1=3. Similarly to the charge 2=3 states, only one combination, namely
B��1=3 D .Y�1=3 � Z�1=3/=

p
2, is coupled to the Higgs and receives a mass shift

after EWSB:

mB�

�1=3
' m9

�
1C y2L9f

2
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9

 C   
	
: (6.38)

The mass of the other field BC
�1=3 D .Y�1=3 C Z�1=3/=

p
2, instead, is just given by

m
BC

�1=3
D m9.

The charge 5=3 resonances, namely the X5=3, the U5=3 and the Y5=3 are not
coupled to the Higgs and their masses are equal to the composite mass parameters,
mX5=3 D m4 and mU5=3 D mY5=3 D m9. Finally the exotic resonances U8=3 and Z�4=3,
being the only states with these electric charges can not be mixed with any other
field and have masses mU8=3 D mZ

�4=3
D m9.

To conclude the discussion of the resonances masses in the 14 C 1 model
we briefly summarize the structure of the spectrum of each SO.4/ multiplet. The
spectrum of the fourplet states is completely analogous to the one we found in the
5C1model and is schematically shown in Fig. 6.1. In the spectrum of the resonances
coming from the 9 representation all the states are degenerate with mass m9 apart
from one charge 2=3 state, the Z2=3, and one charge�1=3 state, the B��1=3. The latter

states are heavier than the other ones and the mass split is of order�m2 � y2L9v
2.

6.1.2 General Properties

After the description of the effective Lagrangians and of the spectrum of the
composite resonances, we can now focus on the general properties that determine
their collider phenomenology. In particular we will analyze the structure of the
couplings involving the composite partners and the SM states and we will estimate
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their sizes. These couplings control the relative importance of the various production
channels as well as the decay branching ratios of the composite states.

Production Mechanisms

As a first aspect we discuss the main production mechanisms of the top partners.
Being color triplets, they can be produced in pairs via QCD interactions through the
splitting of a virtual gluon (see diagrams in Fig. 6.2). An important feature of this
production channel is the fact that its cross section is universal, that is, it depends
exclusively on the partner mass m : �pair D �pair.m /. QCD pair production is thus
always present for all top partners and has a substantial cross section due to the
sizable QCD coupling.

Additional contributions to pair production are mediated by the EW gauge
interactions. All these contributions are typically suppressed with respect to the
QCD ones due to the smallness of the EW gauge couplings. Two classes of EW
contributions are present. The first class is due to diagrams with an s-channel
exchange of an EW gauge boson. The second class, instead, is generated by t-
channel diagrams containing “flavor-changing” gauge interactions that mix a SM
quark and a fermionic resonance. The first class of contributions is nearly universal
and is determined by the EW quantum numbers of the composite resonances (up
to small effects of higher order in v=f ). The second set of contributions, instead, is
sensitive to the details of the strong sector dynamics and crucially depends on the
parameters of the model that determine the size of the flavor-changing couplings.

Apart from pair production, the top partners can also be singly produced in
association with either a top or a bottom quark. The structure of the diagrams
that lead to the dominant contributions is shown in Fig. 6.3. These processes are
induced by a virtual EW boson V D fW˙;Zg emitted from a light quark, which

Fig. 6.2 Leading diagrams contributing to the pair production of composite top partners

Fig. 6.3 Dominant diagrams contributing to the single production of a composite top partner in
association with a top or bottom quark
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Fig. 6.4 Cross sections for the production of top partners at an hadronic collider with energyp
s D 8TeV (left panel) and

p
s D 13TeV (right panel). The black dashed lines correspond to

pair production, while the solid lines correspond to W-mediated single production in association
with a b (red line) or a t (blue line). The single production couplings (in the unitary gauge) have
been fixed to csingle D 0:2, which is a typical value for  D 0:1

then interacts with a top or a bottom quark produced by a gluon splitting. A
distinctive feature of the single production processes is the presence of a forward
jet. Differently from QCD pair production, single production is not universal and is
determined by the value of the flavor-changing EW couplings.

Due to the lower threshold, single production processes are favored over pair
production for higher top partner masses. The production cross section for typical
values of the single production couplings are shown in Fig. 6.4.5 As one can see from
the plots, single production in association with a top quark becomes comparable to
pair production for m � 1TeV. On the other hand, the process in association with
a bottom quark can have a larger cross section than pair production even at low
resonance masses.

Couplings

As we saw in the above discussion, the phenomenology of the light top partners
is relatively simple and is regulated by a few basic ingredients. The production
channels depend only on the QCD interactions and on the EW flavor-changing
gauge couplings. The latter couplings are also responsible for the top-partners
decays.

Since we are typically interested in configurations in which the resonances are
much heavier than the EW bosons and the SM quarks, we can analyze the top-
partner dynamics by using the Goldstone boson equivalence theorem [6, 7]. This
theorem states that, at high energy, E � mW , the longitudinal components of the
gauge bosons are described by the Goldstone fields. The transverse polarizations,

5The cross sections for pair and single production of top partners at the 8 and 13TeV LHC can be
found in [5].
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on the other hand, are well described by the vector fields in the absence of EWSB.
For the processes we are interested in, the transverse components typically give
a negligible contribution and the main effects come from the longitudinal modes.
This can be easily understood for the two-body decay processes into SM fermions,
in which the large mass difference between the composite resonance and the SM
states implies that the decay products are very energetic. A similar conclusion
holds also for the single production processes. In this case, however, the proof is
not straightforward and the effective W approximation [8, 9] must be advocated to
justify the result [1].

In order to derive the couplings to the Goldstone bosons it is convenient to work
in an R gauge, in which the degrees of freedom associated to the unphysical Higgs
components are retained. The Higgs field can be parametrized as

H D
2
4 �C

1p
2

�
v C �C i�0

�
3
5 ; (6.39)

where � denotes the physical Higgs boson and �˙;0 are the unphysical Goldstone
modes.

The trilinear couplings of the Goldstones arise from three kind of terms: the
mixings between the elementary and the composite fermions, the e-symbol term
contained in the covariant derivative in the 4 and the 9 representations and the
d-symbol terms. The last two types of operators generate trilinear interactions
involving a SM fermion only after the rotation to the mass eigenstate basis.
An important feature of the e� and d� operators is the fact that they give rise
to interactions that contain the derivative of the Goldstones and whose strength
crucially depends on the energy of the process. To simplify the analysis it is
convenient to integrate by parts these interaction terms and use a field redefinition
to get rid of the derivatives. If we neglect the top and bottom masses, the effect of
the redefinition is just to replace the derivative acting on a heavy resonance with the
mass of the resonance itself:

i��@� ! m  ; i@� �
� ! �m  : (6.40)

The quantum numbers of the resonances determine at which order in the v=f
expansion each trilinear coupling is generated. It is easy to check that only the
couplings involving fermions in different SO.4/ representations can be generated at
leading order. On the contrary, couplings between fields in the same representation
are necessarily suppressed by powers of v=f and are typically subleading. The order
at which the various couplings between the heavy resonances and the SM fields are
generated is summarized in Table 6.1.

A few peculiar things regarding the couplings of the charge �1=3 partners
are worth mentioning. It is straightforward to check that the composite sector
is automatically invariant under the PLR discrete symmetry, which arises as an
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Table 6.1 Couplings of the composite resonances with the third generation SM quarks mediated
by the gauge fields or the Higgs

WtR ZtR htR WtL ZtL h tL WbL ZbL hbL

X5=3 X – – " – – – – –

X2=3 – X X – " " " (not 5C 1) – –

T – X X – " " " – –

B X – – " – – – – " (only 14C 1)
QT – " " – X X X – –

Y5=3 " – – X – – – – –

Y2=3 – " " – X X X – –

Z2=3 – " " – X X X – –

BC

�1=3 " – – X – – – X –

B�

�1=3 " – – X – – – – X
Z

�4=3 – – – – – – X – –

The couplings that are present at leading order are denoted by a X mark, while the ones generated
only at subleading order in v=f are denoted by "

accidental invariance of the leading effective Lagrangian [10].6 This symmetry is
also preserved by the mixing of the elementary bL and tR fields, whereas it is broken
by the mixing of the tL. An important implication of the PLR invariance is the fact
that the Z coupling to a PLR eigenstate is canonical and is not modified even after
EWSB. Moreover the Z boson can not mediate flavor-changing currents between
two eigenstates with the same PLR parity. Corrections to the Z couplings can only
arise through the couplings that break the PLR symmetry. As far as we are only
interested in tree-level effects, however, the breaking induced by the tL mixing can
not affect the charge �1=3 fermionic sector, which is thus completely invariant
under PLR.7 From the embedding of the elementary and composite fields into SO.4/
multiplets, one can check that all the charge �1=3 states are odd under PLR, with
the exception of the BC

�1=3 field coming from the 9, which instead is even. As a
consequence, the only resonance that can be mixed to the bL through the Z is the
BC

�1=3 state, whereas the B and B��1=3 do not have such couplings.
Another peculiar result on the bL couplings is obtained in the 5 C 1 model. In

this set-up for accidental reasons the mass eigenstate X2=3 is exactly orthogonal to
the state that is coupled to the bL through the W boson. This means that the only
state that is coupled to the bL is the T and not the X2=3. Notice that this accidental
alignment is not present in other models, for instance in the 14 C 1 set-up the
coupling WX2=3bL exists, although, as expected, it is suppressed by a v=f factor.

6See section “Discrete Symmetries” in Appendix in Chap. 3 and section “The Custodial Symme-
tries” in Appendix in Chap. 7 for a detailed discussion of the PLR symmetry and its implications.
7Other corrections can arise from finite-mass effects due to the Z boson. These effects however are
suppressed by m2

Z=m2
� and are negligible.
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Finally, the trilinear coupling of the bL and B fields involving the physical Higgs
is present only in the 14C 1 model and arises at order v=f . In the 5C 5 and 5C 1
models, instead, the charge �1=3 fields are not coupled at all with the physical
Higgs.

Differently from the bL couplings, the interactions involving the top field follow
a much more regular pattern. At leading order in v=f , the fourplet states are coupled
only to the tR field which is realized as an SO.4/ singlet in all the scenarios we
considered. On the contrary the leading interactions of the QT resonance and of the
9 involve the left-handed top component. It is worth mentioning that, in the limit in
which the fourplet is completely decoupled, the Z boson coupling of the QT resonance
with the tR exactly vanishes at all orders in v=f .

The explicit expressions for the leading order couplings of the fourplet and
singlet states are reported in Table 6.2.8 To simplify the results we introduced the
two angles �L and �R defined by

tan�L D yL4f

m4

; tan�R D yR1f

m1

; (6.41)

which parametrize the amount of compositeness of the qL and tR SM fields or, in
other words, correspond to the rotation angles that connect the gauge eigenstate
basis with the mass eigenstate one before EWSB.

Table 6.2 Leading-order trilinear couplings of the Goldstone bosons involving one heavy reso-
nance and one third-generation SM fermion

tR elementary tR composite

�CX5=3L tR �yR4 c�R Cp
2 cR s�R mX5=3 =f

p
2 ct mX5=3 =f

.�C i�0/X2=3L tR � yR4
p

2
c�R C cR s�R mX2=3 =f ct mX2=3 =f

.� � i�0/TL tR
yL1
p

2
s�L s�R C yR4

p

2
c�L c�R � cR s�R mT=f yLt

p

2
s�L � ct mT=f

��BL tR �yL1s�L s�R � yR4c�L c�R C p
2 cR s�R mB=f �yLt s�L C p

2 ct mB=f

.�C i�0/QTR tL � yL1
p

2
c�L c�R � yR4

p

2
s�L s�R C cL s�L m

QT=f � yL1
p

2
c�L C cL s�L m

QT=f

�C QTR bL yL1c�L c�R C yR4s�L s�R � p
2 cL s�L m

QT=f yL1 c�L � p
2 cL s�L m

QT=f

On the second column “tR elementary” we report the results for the 5 C 5 model. On the third
column “tR composite” we list the results for the 5C1 and 14C1 models that give rise to the same
coupling at leading order in the v=f expansion. We denoted by s�L;R and c�L;R the sine and cosine
of the mixing angles �L;R

8For shortness we do not report the explicit couplings of the resonances in the 9 multiplet. The
explicit expressions for the leading couplings of these states can be found in [4].
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The leading order couplings in the case of the 5 C 1 and 14 C 1 models are
exactly the same. Moreover they coincide with the ones derived in the 5 C 5

model in the limit of large tR compositeness, sin �R D 1, as can be seen by a
trivial identification of the d-symbol term coefficients. It is important to stress that,
although the interactions of the resonances in the fully composite tR models can
be obtained as a limiting case of the scenarios with an elementary tR, the two set-
ups do not fully coincide in this limit. Indeed in the 5 C 5 model the mixing of
the elementary tR breaks the global SO.5/ invariance (for instance it generates a
contribution to the Higgs potential), whereas in the 5C 1 and 14C 1 models the tR
field and its interactions are completely invariant under SO.5/.

Another interesting result is the fact that the interactions of the X5=3 and T
resonances coincide with the ones for the X2=3 and B states apart from an overallp
2 factor. This is a consequence of the SU.2/L invariance that is respected by the

leading-order couplings.
As can be seen from the explicit results in Table 6.2, the strength of the d-

symbol interactions is controlled by the mass of the heavy resonance and thus can
significantly enhance the trilinear couplings. This is especially true in the scenarios
with a fully composite tR, where the terms proportional to ct control the interactions
between the fourplet and the tR. However, also in the other cases, the contributions
from the strong sector interactions can be sizable. For instance, in the 5 C 5

model, although the d-symbol term does not directly generate a coupling involving
the elementary fermions, it can significantly modify the trilinear interactions in
Table 6.2 through the elementary/composite mixings. Of course this contribution
is only present if both the fourplet and the singlet resonances are present in the
effective Lagrangian. The decoupling of this effect is governed by the mixing angles
sin �L;R, thus even a relatively heavy multiplet can affect the couplings of the lighter
resonances provided that its mixing angle is not too small.

It is also important to stress that, from the point of view of our effective approach,
the d-symbol interactions are controlled by free parameters, ct and cL;R, and the
values of the trilinear couplings relevant for the single-production and the decays
are, to a large extent, arbitrary. This has to be contrasted with what happens in
renormalizable theories with additional vector-like quarks. In that case the trilinear
interactions involving a SM field and a resonance arise only from the usual gauge
interactions after rotating the fields from the gauge-eigenstate basis to the mass-
eigenstate one. This means that the value of these couplings is tightly related to the
mixings between the elementary and the composite states and their maximal size is
determined by the SM gauge couplings and by the EW charges of the resonances.
In composite Higgs models, on the contrary, this constraint is not there and these
couplings can be significantly larger.

To conclude the discussion it is useful to comment on the connections between
the Goldstone couplings and the gauge couplings in the unitary gauge which is
commonly used in the explicit computations and for parametrizing the production
cross sections (see [1, 5]). The gauge bosons couplings in the unitary gauge at the
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leading order in v=f can be easily derived from the leading Goldstone couplings
listed in Table 6.2. The connection is given by the relation

gWXtL;R D
gv

2mX
gGold
�˙XtL;R

; gZXtL;R D
gv

2cwmX
gGold
�0XtL;R

; (6.42)

where g is the SU.2/L gauge coupling and cw is the cosine of the weak mixing angle.
Analogous relations are valid for the leading bL couplings.

In general the size of the single production couplings can vary considerably
in different models depending on the resonance species and on the detailed
implementation of partial compositeness. It is however possible to derive a simple
generic estimate which can be used to get a rough idea of the expected coupling size.
The single production interactions in the unitary gauge are always proportional to
the EW symmetry breaking scale v. This can be easily understood by noticing that
the gauge interactions are flavor diagonal if the EW symmetry is unbroken. In the
composite Higgs scenarios any v insertion is accompanied by a factor 1=f , therefore
the couplings are proportional to the universal factor

csingle � g
v

f
D g

p
 ; (6.43)

where the EW coupling factor g is due to the fact that the single production
couplings are EW gauge interactions. Given that, in reasonably Natural and viable
scenarios,  � 0:1, the above estimate suggests a typical value csingle � 0:2, even
though considerable numerical enhancements are possible in explicit models.

6.1.3 Collider Phenomenology

In this subsection we briefly discuss the collider phenomenology of the top partners.
For simplicity we focus on simplified scenarios in which all the relevant light
fermionic resonances belong to a single SO.4/ multiplet. Although more generic
situations are possible, this assumption is not a very restrictive one. From he point
of view of collider phenomenology, a mass difference of a few hundred GeV
is typically enough to suppress the role of the heavier states due to a reduced
production cross section. In this case considering only the lightest multiplet is
typically a very good approximation. Exceptions to this rule are possible in non-
generic cases in which the heavier states have exceptionally large couplings to the
SM fields or lead to final states which are particularly easy to identify. In these
situations considering only the lightest multiplet can lead to an underestimation of
the signal and to milder exclusion bounds.
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The Fourplet

As a first case we concentrate on the scenario with only a light fourplet. The
lightest state in the spectrum is given by the exotic X5=3 resonance. Due to its
electric charge its only gauge interaction with the SM fermions involves the top
quark, hence its only non-negligible decay channel is into a top and a W boson,
BR.X5=3 ! WCt/ ' 1. The size of the coupling to the top has a different parametric
dependence in the scenarios with a fully composite and an elementary tR. In the
former case, the coupling strength follows the general estimate in Eq. (6.43); in the
unitary gauge one gets

gX5=3tR D
gp
2

ct
v

f
: (6.44)

On the other hand, in the generic scenarios with an elementary tR the coupling tends
to be suppressed at high resonance masses9:

gX5=3tR '
g

2

v

f

s
ytop

f

mX5=3

: (6.45)

Apart from pair production, which typically dominates at small masses (mX5=3 .
700GeV at the 8TeV LHC), the X5=3 resonance can also be singly produced in
association with a top. Both production channels give rise to final states containing
same-sign leptons, which can be efficiently detected at the LHC [11–13].

Contributions to the same final states also come from the B resonance. This state
is always heavier than the X5=3, thus its contribution to the signal is relevant only if
the mass split is not too large (�m� 500GeV) [5, 13]. The dominant coupling of
the B involves the top quark, thus it can be singly produced in association with a top
and its most relevant decay channel is B! Wt.

In all the scenarios we considered the X5=3 resonance forms a nearly-degenerate
doublet with the X2=3. At leading order, the X2=3 couples to the top through the Z
boson and the Higgs. These two couplings have similar strength and determine the
dominant branching ratios BR.X2=3 ! Zt/ � BR.X2=3 ! ht/ � 1=2.

The last state inside the fourplet, the charge-2=3 T, is close in mass to the B. Its
phenomenology is similar to the one of the X2=3 resonance and the two states have
similar production and decay channels (BR.T ! Zt/ � BR.T ! ht/ � 1=2).
Given the sizable mass gap between the T and the lightest resonances inside the
fourplet, the chain decays T ! ZX2=3, T ! hX2=3 and T ! WX5=3 are usually
kinematically allowed. The corresponding couplings, however, arise at subleading
order on v=f , thus the direct decays into SM states are favored.

9Significant deviations from this estimate can appear if a light singlet is present or if the tR mixing
is much larger than the tL one (yR 	 yL). In these cases the coupling follows the general estimate
in Eq. (6.43).
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Fig. 6.5 Exclusions in the scenarios with only a light fourplet for the 8TeV LHC data. On the
left panel: 5 C 5 model for  D 0:1 (green region) and  D 0:2 (blue region). The gray areas
are theoretically excluded. On the right panel: exclusions for the 14 C 1 model in the .mX5=3 ; ct/

plane. The blue (green) region shows the excluded points for yL D 3 (yL D 0:3) for  D 0:2. The
exclusions for  D 0:1 are denoted by the dashed contours

To conclude we summarize the constraints coming from the 8TeV LHC searches.
The experimental collaborations performed several searches for pair-produced
fermionic resonances. The most sensitive ones exploit the same-sign leptons final
states to look for exotic X5=3 resonances. They provide the bound mX5=3 &
770GeV [14, 15]. Several searches for charge-2=3 resonances have also been
presented. The strongest bounds on these states are given by mX2=3 & 700GeV
and have been obtained by the CMS collaboration by combining the three decay
channels bW, tZ and tH [16]. Other searches for charge-2=3 resonances performed
by the ATLAS collaboration are available in the literature. They include, in
particular, searches for resonances decaying into a single channel (Zt [17] and
ht [18]), as well as searches for resonances giving rise to final states with two same-
sign leptons [14].

Although the single production channels have not been taken into account in
the experimental analyses at the 8TeV LHC, their impact on the exclusions can
be non-negligible. Estimates of the constraints on the parameter space of the 5 C
5 and 14 C 1 scenarios are shown in Fig. 6.5.10 These results include the same-
sign lepton signal coming from single production of the X5=3 resonance and the
additional contributions due to the B resonance. One can see that these effects can
significantly increase the bound on mX5=3 and push it above 1TeV in a sizable part of
the parameter space. The exclusions for the 5C 1 scenario only slightly differ from
the ones for the 14C 1 case, the differences in the bounds being of order 20GeV.
The full LHC program should be able to extend the reach for top partners to the
2–3TeV range.

10One free parameter, namaly yL4 in the 5 C 5 model and yLt in the 14 C 1, has been fixed by
requiring the correct value of the top mass.
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The Singlet

The second scenario we focus on is the one with only a light composite singlet. The
phenomenology of this scenario is quite simple because the low-energy spectrum
contains only one light resonance, the QT . As shown in Table 6.1, the QT resonance has
three leading-order couplings, which involve the left-handed top and bottom quarks.
The SU.2/L invariance fixes the relative size of these couplings (see Table 6.2)
and determines the dominant decay branching ratios: BR. QT ! Wb/ � 1=2 and
BR. QT ! Zt/ � BR. QT ! ht/ � 1=4. Notice that the decay channel into the bottom
quark is further enhanced by the larger phase space, although this effect is relevant
only for small QT mass.

The presence of large W and Z couplings to the top and bottom quarks
implies a sizable cross section for the single production channels. In particular
single production in association with a bottom quark is the dominant production
mechanism in a large part of the parameter space. The leading-order couplings of
the QT resonance can be easily estimated. In the case with an elementary tR one finds

gQTbL
D �p2cwgQTtL

' g

2

v

f

s
ytop

f

mQT
; (6.46)

which is suppressed at large resonance masses with respect to the general estimate
in Eq. (6.43). In the models with a fully composite tR the estimate of the coupling
strength becomes

gQTbL
D �p2cwgQTtL

D g

2
yL1

v

mQT
: (6.47)

It is interesting to notice that the expression for gQTbL
in Eq. (6.47) depends only on

the yL1 mixing and on the QT resonance mass, but not on the compositeness scale
f . This implies that the exclusion bounds, when expressed as a function of yL1 are
almost independent of .

In the scenarios with only a light singlet a strong correlation exists between the
coupling responsible for b-associated single production, gQTbL

, and the Vtb element
of the CKM matrix. Before EWSB, the only W-mediated coupling involving the
b quark is the usual tL =WbL vertex, included in the elementary-fields Lagrangian.
After EWSB, due to the mixing between the top and the L-handed component of
the QT resonance, the gQTbL

coupling is generated together with some corrections to
the tL =WbL coupling. It is straightforward to see that the following relation holds

g2QTbL
C g2tb D g2=2 ) gQTbL

D g
q
ıVtb � ıV2

tb=2 ; (6.48)

where gtb denotes the tL =WbL coupling and ıVtb D 1�jVtbj. The requirement that the
correction to Vtb should be small implies an upper bound on the gQTbL

coupling and
on the single production cross section. The current measurements of the Vtb matrix
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Fig. 6.6 Exclusions in the 5 C 5 (left panel) and 14 C 1 scenarios (right panel) with only a
composite singlet for the 8TeV LHC data. The blue (green) region shows the excluded points for
 D 0:2 ( D 0:1). The striped regions correspond to the points with ıVtb � 0:1 for  D 0:1,
while the boundary of the region with ıVtb � 0:05 is denoted by the dashed gray lines. The dotted
gray lines show how these regions change for  D 0:2

element give the value jVtbj D 1:021 ˙ 0:032 [19]. Taking into account the fact
that in our scenario jVtbj � 1, the experimental bound implies gQTbL

� 0:21 g at the
2� level. Obviously, if additional relatively light resonances are present, the relation
in Eq. (6.48) may be modified and larger values of gQTbL

could be compatible with
sufficiently small deviations in Vtb. This however would probably require a certain
degree of additional tuning.

The 8TeV LHC bounds on this scenario come from the searches for pair
produced charge-2=3 states. The strongest ones (mQT & 700GeV) have been
obtained by the CMS collaboration [16]. Slightly milder bounds have been derived
by the ATLAS collaboration by looking into single channels (Wb [20], Zt [17] and
ht [18]) or looking for final states with two same-sign leptons [14].

Due to the large single production cross section in association with a bottom
quark, it is conceivable that the bounds can be significantly increased by a modified
search strategy which could be sensitive to this additional channel. Possible search
strategies have been proposed in the literature [21]. The exclusion bounds in the
5 C 5 and 14 C 1 scenarios for the 8TeV LHC data are shown in Fig. 6.6. The
results shown in the plots include the bounds from the experimental analyses and
the estimate of the constraints coming from single production searches. The bounds
for the 5C 1 scenario are very close to the ones for the 14C 1 model.

The Nineplet

As a last case we discuss the scenario with only a light nineplet. As we saw in
Sect. 6.1.1 in this model all the resonances are almost degenerate, thus they can
all be pair produced with similar rates via QCD interactions. Moreover direct
decays into SM states, if allowed, are favored with respect to chain decays, which
should necessarily proceed off-shell. The phenomenology of the states with charge
2=3, �1=3 and 5=3 is quite similar to the one we discussed in the two previous
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scenarios.11 In particular the bounds coming from the 8TeV LHC experimental
searches apply to the nineplet resonances as well. A small difference with respect
to the previous scenarios is the fact that, due to the presence of multiple almost-
degenerate states, each final state benefits from an enhanced signal. By taking into
account this effect slightly stronger bounds than in the fourplet and singlet cases can
be derived.

In addition to the above mentioned resonances, the nineplet also contains two
exotic-charge states, the U8=3 and the Z�4=3. The latter has a simple phenomenology
since it can couple only to the bottom quark. This fixes its decay channel, Z�4=3 !
W�b, and implies that it can be singly produced only in association with a b. On the
other hand, the phenomenology of the U8=3 resonance is more peculiar. Due to its
charge, it can not simply decay into a gauge boson and a SM quark. Instead it must
decay into a three-body final state U8=3 ! WCWCt. This decay can be mediated by
an off-shell charge-5=3 resonance (the X5=3 or the Y5=3) or by a contact interaction
coming from the higher-order operator

LUV D i
ct9

m�
 

ij
9d

i
�d�;jtR C h:c: ; (6.49)

where ct9 is expected to be of order one. It turns out that, if m� is in the multi-
TeV range, the contribution due to the contact interaction is subleading with respect
to the one mediated by an off-shell resonance. For smaller values of m�, instead,
the contact interaction can play a significant role and can modify the angular and
invariant mass distributions of the decay products.

The U8=3 state can be easily probed in final states with two or three same-sign
leptons. The searches for charge-5=3 states, which exploit the former channel, can
thus be reinterpreted for the U8=3 resonance. Since several W bosons are present
in the final state, the probability of obtaining two or more same sign leptons is
quite high. As a consequence, the efficiency for the two same-sign lepton searches
is enhanced (it is nearly an order of magnitude higher than for a charge-5=3
resonance), making the U8=3 the best target to probe a light nineplet. The 8TeV
LHC searches can be recast to get the bound m9 & 990GeV [4], which is much
stronger than the ones obtained from pair production in the light fourplet and light
singlet scenarios.

6.1.4 Other Fermionic Partners

To conclude the discussion about the fermionic partners, it is worth mentioning that
other classes of fermionic resonances are usually present in the composite Higgs
scenarios. As we saw in Chaps. 2 and 4, in several models, most noticeably the

11The interested reader can find a more detailed discussion in [4].
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ones in which the composite states belong to the fundamental representation of
SO.5/, additional fermionic partners specifically connected to the bottom sector are
present. These states are responsible for generating the bottom mass and are mainly
coupled to the bR component and to the qL D .tL; bL/ doublet. Being dominantly
coupled to third-generation quarks, the bottom partners have the same collider
phenomenology of top partners. The only peculiarity of these resonances is the fact
that their mixing with the elementary states, being controlled by the bottom mass,
is typically much smaller than the one of the top partners. The bottom partners can
be easily parametrized by a generalization of the formalism we used in this chapter.
Their relevance for collider experiments has been analyzed in [22–24].

As already mentioned and explained in details in Sect. 4.1, in the anarchic
flavor scenarios all the quark partners have sizable mixing with the third-generation
quarks, thus they unavoidably belong to the wide category of top (or bottom)
partners. The situation can be quite different in models based on flavor symmetries.
In this case the light-generation quarks can be associated to specific sets of fermionic
partners whose mixing with the heavy SM quarks is quite small. These states
can be copiously produced at hadron colliders and their cross section can be
significantly enhanced by the fact that the light SM quarks can have a sizable
amount of compositeness. The decay channels of the light-generation partners are
quite different from the ones of the top partners. These states mainly decay into
light quarks (i.e. jets) via interactions mediated by the SM gauge bosons or the
Higgs. This kind of decays leads to very distinctive collider signatures. We refer the
interested reader to the original literature [25–31].

Finally, in addition to the quark partners, composite Higgs models can also
predict lepton resonances. For instance, this happens if the lepton sector follows the
usual partial compositeness structure (see Sect. 4.4 for a discussion on this topic).
Obviously the collider phenomenology of the lepton partners differs significantly
from the one of the quark partners. A fundamental difference is the fact that
the lepton partners are neutral under QCD, thus they can not be easily produced
at a hadron collider. Only a limited attention has been devoted so far to the
phenomenology of these resonances. The main results can be found in [32, 33],
which focus on scenarios characterized by a large tau compositeness.

6.2 Vector Resonances

In the previous section we focused on the phenomenology of the fermionic
resonances. In particular we considered them “in isolation”, that is, we assumed
them to be the only light composite states coming from the new strong dynamics and
we neglected effects due to other possible resonances. However, as we saw in the
general discussions in Chaps. 2 and 3, the composite dynamics typically gives rise
to a much richer set of relatively light resonances. For instance in One-Scale-One-
Coupling theories (see Chap. 3) we expect the presence of composite vector states
with a mass roughly comparable to the one of the fermionic resonances. In such a
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scenario a non-trivial interplay in the phenomenology of the fermionic and vector
resonances is expected.

Going beyond the One-Scale-One-Coupling scenarios and taking into account
Naturalness considerations, a slightly more refined picture emerges. The fermionic
states, in particular the top partners, are usually required to be quite light (m �
f ) in order to obtain a light Higgs and minimize the amount of fine-tuning.
On the other hand, the Naturalness “pressure” on the vector resonances is less
severe, allowing these states to be considerably heavier than the fermions without
worsening the amount of tuning. A high mass for the vector resonances is also
preferred by the indirect constraints coming from flavor physics (see Chap. 4) and
EW precision measurements (see Chap. 7). The former constraints force the QCD
vector resonances to be quite heavy, while the latter impose a lower bound of a few
TeV on the mass of SU.2/L-charged states. Of course these bounds, as usual for
indirect constraints, should be interpreted as rough estimates and not as strict limits.
Cancellations in the indirect bounds are always possible, although they usually
require some additional amount of tuning.

Analogously to what we did for the fermionic resonances in the previous section,
in the following we will discuss the phenomenology of the vector resonances
by using a model-independent approach. Guided by the above considerations,
however, we will not describe the vector states alone, instead we will write some
more complete simplified models that also include the dynamics of the composite
fermions. Given that in many scenarios the top partners tend to be the lightest
fermionic states, we will only include them in the effective parametrization and we
will assume that other possible fermionic states are heavier and are not relevant for
collider phenomenology. For most of our discussion we will follow [34, 35], related
studies can be found in [36, 37].

6.2.1 The Effective Parametrizations

The effective Lagrangians describing the vector resonances can be straightforwardly
built by using the CCWZ formalism. The vector resonances are classified in terms
of their quantum numbers under the unbroken SO.4/ ' SU.2/L � SU.2/R group.
In the following we will consider three relevant scenarios, with resonances in the
.3; 1/, .1; 3/ and .1; 1/ representations.

In addition to the SO.5/ � U.1/X group, the global symmetry of the composite
dynamics also contains the usual SU.3/c QCD group. This implies that vector
resonances with QCD quantum numbers can also be present. These resonances
are usually called “heavy gluons” or, adopting the language of extra-dimensional
models, “Kaluza-Klein gluons”. As we saw in Chap. 4, these states are important
in the context of flavor physics because they can mediate flavor changing neutral
currents, leading to strong bounds in generic composite Higgs scenarios. From the
point of view of the effective CCWZ description, the heavy gluons are singlets under
SO.4/ and transform as an octet under QCD.
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In the effective Lagrangians we present in the following we only include the
kinetic and mass terms for the vector resonances and the relevant interactions
with the top partners. For simplicity we only consider top partners that transform
as fourplets and singlets under SO.4/. The extension of the formalism to other
representations can be straightforwardly worked out. The Lagrangians for the top
partners and for the SM third-generation quarks coincide with the ones discussed in
Sect. 6.1.1. The elementary gauge fields as well as the light quarks and the leptons
are described by the usual SM Lagrangian.

Notice that the effective Lagrangians for the vector resonances can be used both
in the standard partial compositeness scenarios and in the scenarios with a totally
composite tR. When necessary we will explicitly comment on the few differences
between the two cases.

SU.2/L Triplets

The first scenario we consider is the one with vector resonances, �L
�, belonging to

the .3; 1/ representation. We assume that these states transform non-homogeneously
under SO.4/:

�L
� � �aL

� taL
L ! h Œ…I g� �L

� h Œ…I g�T C i
�
h Œ…I g� @�h Œ…I g�T�L ; (6.50)

where taL
L are the SU.2/L generators in SO.4/ and h Œ…I g� is the non-linear SO.4/

transformation corresponding to an SO.5/ element g (the exact definition can be
found in Chap. 2, Eq. (2.48)). The subscript L in the second term on the right-hand
side means that only the .3; 1/ components must be taken (see section “Explicit
CCWZ for SO.5/=SO.4/” in Appendix in Chap. 2). The �L

� resonance is also
assumed to be neutral under the U.1/X symmetry and under QCD.

Due to its quantum numbers, the �L
� resonance can be directly coupled to top

partners,  4, in the fundamental representation of SO.4/. On the other hand, no
interaction with SO.4/ singlets arises at leading order. The effective Lagrangian
reads

L�L D �
1

4g2�L
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2g2�L
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�
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L /ij 
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4 ;

(6.51)

where � is a free parameter (expected to be of order one) and the �L
� field strength

is defined as �aL
�	 D @��

aL
	 � @	�aL

� C �aLbLcL�bL
� �

cL
	 . Notice that, due to the

non-homogeneous transformation of �L
� under SO.4/, we needed to use the e�

CCWZ symbol in order to write suitable mass and interaction terms. The �L
� � eL

�

combination, indeed, transforms homogeneously under SO.4/ and can be used to
build the invariant operators in the effective Lagrangian.

The mass term in Eq. (6.51) induces a mixing between the vector resonance and
the elementary SU.2/L gauge fields. This means that the SM gauge fields do not
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coincide exactly with the elementary states but rather acquire a (small) component
along the composite vectors. This also implies that the SM SU.2/L gauge coupling,
g, differs from the elementary coupling g0 and is given by the combination

1

g2
D 1

g20
C 1

g2�L

: (6.52)

The U.1/Y and QCD couplings, instead, coincide with the elementary ones, g0 D g0
0

and gs D gs0.
The masses of the SM gauge bosons, at the linear order in , are given by the

expressions

m2
W D

g2

4
f 2 ; m2

Z D
g2 C g02

4
f 2 : (6.53)

The mass spectrum of the vector resonances is quite simple. The masses of all the
resonances coincide at order :

M2

�˙

L
D M2

�0L
' g2�L

g2�L
� g2

m2
�L
� 
4

g2

g2�L
� g2

�
2m2

�L
� f 2g2

�
: (6.54)

Due to the custodial invariance a mass split can only arise at order 2 and must be
weighted by the hypercharge coupling g0:

M2

�0L
�M2

�˙

L
' 2

16

g02

g2�L

m2
�L

 
1 � f 2g2

m2
�L

!
: (6.55)

As a consequence the charged and neutral vector resonances have a mass split
typically below 0:1% and can be considered degenerate from the point of view
of collider phenomenology.

SU.2/R Triplets

The effective description of vector resonances in the .1; 3/ representation, which we
denote by �R

�, is quite similar to the one of the �L
� states. Under the SO.4/ subgroup

we assume that the SU.2/R triplet transforms as

�R
� � �aR

� taR
R ! h Œ…I g� �R

�h Œ…I g�T C i
�
h Œ…I g� @�h Œ…I g�T�

R
; (6.56)

where taR
R correspond to the SU.2/R generators in SO.4/. As denoted by the subscript

R, only the .1; 3/ components of the shift term must be considered. Analogously to
the SU.2/L triplet, the �R

� resonances can be directly coupled to top partners in the
fundamental representation of SO.4/, while no interactions with the singlets arise at
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leading order. The effective Lagrangian describing the �R
� resonances can be written

as

L�R D �
1

4g2�R

�aR
�	�

aR�	 C m2
�R

2g2�R

�
�aR
� � eaR

�

�2 C �  i
4�

�
�
�aR
� � eaR

�

�
.taR

R /ij 
j
4 ;

(6.57)
where �aR

�	 D @��aR
	 � @	�aR

� C �aRbRcR�bR
� �

cR
	 is the �R

� field strength.
Due to the mass term in the effective Lagrangian, the neutral resonance in the

SU.2/R triplet is mixed to the elementary hypercharge gauge boson B�. The SM
gauge U.1/Y gauge coupling is then given by

1

g02 D
1

g02
0

C 1

g2�R

; (6.58)

while the SU.2/L and QCD couplings coincide with the elementary ones, g D g0 and
gs D gs0. The breaking of the custodial symmetry due to the hypercharge gauging
determines a small split of the neutral and the charged �R

� resonances. The masses,
up to corrections of order 2 are given by

M2

�˙

R
D m2

�R
; M2

�0R
D g2�R

g2�R
� g02m2

�R
� 
4

g02

g2�R
� g02

�
2m2

�R
� f 2g02

�
: (6.59)

The neutral resonance is always slightly heavier than the charged ones. The mass
difference, however, is sizable only for quite small values of the g�R coupling (g�R .
1). The SM gauge boson masses at leading order in  coincide with the expressions
given in Eq. (6.53).

Singlets

The next set-up we consider is the scenario in which the vector resonance, denoted
by �X

�, is an SO.4/ and QCD singlet. For definiteness we consider the case in
which the vector state is associated to the U.1/X symmetry, that is we assume it
to transform as a gauge field under the Abelian U.1/X subgroup12:

�X
� ! �X

� C @�˛X : (6.60)

12Notice that the assumption that �X
� transforms as a gauge field does not imply any real constraint

on its properties. In full generality one can define a shifted version of the �X
� field, namely �0X

� 

�X
� � g0

0B�, that is invariant under U.1/X and rewrite the effective Lagrangian in terms of the new
field.



260 6 Collider Phenomenology

The �X
� fields is thus naturally mixed with the elementary hypercharge boson B� that

gauges the diagonal subgroup of SU.2/R � SO.4/ and U.1/X .
The general structure of the effective Lagrangian for the singlet vector resonance

is

L�X D �
1

4g2�X

�X
�	�

X�	 C m2
�X

2g2�X

�
�X
� � g0

0B�
�2 C �

�X
� � g0

0B�
�

J��X
; (6.61)

where the �X
�	 field strength is given by �X

�	 D @��
X
	 � @	�X

� and we denoted
collectively by J��X any singlet current constructed from the composite fermion
states. Notice that, in general, the �X

� resonance is coupled to all the fermionic
resonances that can give rise to a singlet current. For instance it can couple to the

currents obtained from the fourplet fields, J��X 3 �4  i
4�

� i
4, as well as from the

singlets, J��X 3 �1  1�
� 1.13 It is interesting to notice that, in the scenarios with a

fully composite right-handed top, the �X
� field can be directly coupled to the tR field.

Mixed couplings involving the tR and the singlet resonance  1 can also be present:

J��X
3 �t tR�

�tR ; �t1 tR�
� 1R C h:c: (6.62)

Analogously to the scenario with an SU.2/R vector triplet, the hypercharge gauge
coupling is given by a combination of the elementary U.1/Y coupling g0

0 and of the
vector resonance coupling g�X , namely

1

g02 D
1

g02
0

C 1

g2�X

: (6.63)

The SU.2/L and QCD couplings, on the other hand, coincide with the corresponding
elementary couplings. The mass of the vector resonance is given (up to corrections
of order 2) by the following expression

M2
�X
D g2�X

g2�X
� g02m2

�X
C g04

g2�X
� g02

f 2

4
: (6.64)

The SM gauge boson masses at leading order in  coincide with the expressions
given in Eq. (6.53).

13This situation is not uncommon in explicit models. For instance in the minimal scenarios all the
top partners are charged under the U.1/X subgroup, thus we expect them to be coupled to vector
fields with the quantum numbers of the �X

� resonance.
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Heavy Gluons

The last class vector states we consider are the heavy gluons, �g
�, or, in other words,

vector resonances that transform as an octet under QCD:

�g
� ! gSU.3/�

g
�g
SU.3/ C igSU.3/@�g
SU.3/ ; (6.65)

where gSU.3/ denotes an SU.3/c transformation. The phenomenology of the heavy
gluons is quite similar to the one for the singlet vector resonances. The Lagrangian,
in fact, is analogous to the one we wrote for the �X

� field (see Eq. (6.61)). There are
only two obvious differences: the heavy vectors are now mixed with the elementary
gluons, and the current J�g transforms in the adjoint representation of SU.3/c. The
Lagrangian is thus given by

L�g D �
1

4g2�g

�g
�	�

g�	 C m2
�g

2g2�g

�
�g
� � gs0G�

�2 C ��g
� � gs0G�

�
J�g : (6.66)

The heavy gluons are directly coupled with the top partners and can have a direct
coupling to the right-handed top if it is a fully composite state.

Given that the QCD bosonic sector is not affected by EWSB, the mass of the
heavy gluons is simply given by

M2
�g
D g2�g

g2�g
� g2s

m2
�g
; (6.67)

and the SM QCD gauge coupling is related to the elementary coupling gs0 by

1

g2s
D 1

g2s0
C 1

g2�g

: (6.68)

6.2.2 Collider Phenomenology

We can now discuss the collider phenomenology of the vector resonances. As a
preliminary step we will analyze the structure of the couplings with the SM fields
and with the top partners. These couplings are of fundamental importance for
collider phenomenology because they determine the main production and decay
channels of the vector resonances. After this preliminary discussion we will present
in details the most promising channels for the direct detection of the vector states at
hadronic colliders.
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Couplings

The couplings of the vector resonances that are important for collider phenomenol-
ogy belong to three main classes: coupling to the SM gauge fields and the Higgs,
couplings to light SM fermions (namely the leptons and the quarks from the first
two generations) and couplings to heavy SM quarks and top partners. Each class has
specific features that depend on the way the couplings are generated. Moreover each
class influences the collider phenomenology of the vector resonances in a different
way leading to specific collider signatures.

The couplings to the SM bosons we are mainly interested in are the ones
that involve two SM states and one composite resonance. These couplings are
relevant for the decay of the vector states and, at the same time, control the
Vector Boson Fusion (VBF) production channel. As we did for the top partners
couplings in Sect. 6.1.2, we can simplify the analysis by relying on the Goldstone
boson equivalence theorem, according to which the longitudinal components of
the W and Z gauge bosons are well described by the corresponding Goldstone
bosons in the high-energy limit. Due to the large mass gap between the vector
resonances and the SM gauge fields, the equivalence theorem is expected to provide
an excellent approximation. Remembering that the Goldstone bosons transform
in the fundamental representation of the unbroken SO.4/ group, we can easily
link the structure of the vector resonances couplings to their quantum numbers
under SO.4/ ' SU.2/L � SU.2/R. The vector resonances in the .3; 1/ and
.1; 3/ representations can be directly coupled to the Goldstone multiplet and the
corresponding couplings can be estimated to scale as

g�L;R�� �
�

m�L;R

g�L;R f

�2
g�L;R � g�L;R ; (6.69)

where � denotes any of the Goldstone bosons, including the physical Higgs. To
obtain the last estimate in the above equation we applied to usual One-Scale-One-
Coupling power-counting, according to which m�L;R=g�L;R � f . As one can see
from Eq. (6.69), the coupling of the vector triplets to the SM gauge bosons is of
the order of the resonances coupling, hence it is usually sizable. This result is not
unexpected since the g�L;R�� coupling parametrizes an interaction involving only
composite states.

On the other hand, the singlet vector states and the heavy gluons, which are
not charged under SO.4/, have strongly suppressed couplings to the SM gauge
fields since they can not be directly coupled to the Godstones. The singlets, indeed,
interact mostly with the transverse gauge bosons and the corresponding coupling is
generated only after EWSB through the mixing between the vector resonances and
the B� boson. This coupling is very small, of order

g�XWW � g�XZH � g02

g�X

 : (6.70)
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Fig. 6.7 Structure of the leading diagrams giving rise to the coupling of the composite vector
resonances with the light SM fermions. The black dot denotes the mass mixing between the
composite states and the elementary gauge fields

In the case of the heavy gluons, instead, a trilinear coupling involving two SM
gluons is altogether absent due to the unbroken SU.3/c gauge invariance.

The second class of couplings, which involves the light SM fermions, is mainly
generated through the mixing of the vector resonances with the elementary gauge
fields. This effect is “universal” and depends only on the quantum numbers of the
fermion species, which determine the couplings to the elementary gauge fields.
The structure of the diagrams giving rise to these couplings are shown in Fig. 6.7.
They arise from the exchange of an elementary gauge field which is mixed with
the composite vector states through a mass term. The strength of the effective
interactions depends on the coupling of the “mediator” gauge boson and on the
 order at which the mixing is generated. We will discuss the various cases in the
following.

For the SU.2/L triplet �L the main couplings are due to the mixing with the W
boson. This mixing is already present before EWSB, thus the effective coupling is
not suppressed by powers of . These interactions obviously involve the left-handed
fermion components and their strength can be estimated as

g�L fL fL ' cL
g2

g�L

; (6.71)

where cL denotes the SU.2/L charge of the fermions. Another class of contributions
to the �L couplings comes from the �0L mixing with the B� field. This mixing,
however, arises only after EWSB, thus the induced couplings scale as g02=g�L and
can typically be neglected.

The couplings of the SU.2/R triplet �R and of the singlet �X are mainly due to the
mixing with the hypercharge gauge boson. They can be estimated as

g�0Rff ' cY
g02

g�R

; g�X ff ' cY
g02

g�X

; (6.72)

where cY denotes the hypercharge of the fermions. Notice that, differently from the
couplings of the neutral components of the SU.2/R triplet, the couplings of the �Ṙ
resonances to the light SM fermions are generated only after EWSB (through the
mixing with the W bosons) and are thus strongly suppressed: g

�˙

R ff
� g2=g�R.
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Finally, the heavy gluons are coupled to the light SM quarks thanks to the mixing
with the elementary gluons. The corresponding couplings are of order

g�gff ' g2s
g�g

: (6.73)

We can now discuss the couplings that involve the third generation quarks and
the top partners. The main source of these interactions is the coupling of the vector
resonances with the composite fermions, which is generated directly by the strong
dynamics. As can be easily understood, the strength of these couplings is equal to
the vector resonance coupling and is weighted by the amount of compositeness of
the fermions.

To be more explicit, any interaction involving two fully composite fermions has
a strength

g N�XX0 � g N� ; (6.74)

where N� collectively denote any vector resonance, while X and X0 correspond to any
fermion resonance whose mixing with the elementary states is small. This estimate
applies, for instance, the to the X5=3 state, which is purely composite, or to the X2=3
field, which is mixed to the elementary states only after EWSB. The same estimate
is valid for the couplings involving the right-handed top component in the scenarios
where it is fully composite.

On the other hand, an interaction involving a partially composite SM quark or a
top partner with a large mixing to the elementary sector has a strength suppressed
by the fermions compositeness angle. For example, the tL and bL fields acquire a
degree of compositeness due to the mixing with the composite fourplet  4 and the
corresponding mixing angle is (see Sect. 6.1)

tan�L D yL4f

m4

: (6.75)

An interaction involving the tL field is thus weighted by a factor sin�L for each tL
field:

g�LtLtL � g�L sin2 �L ; g�RtLX5=3L � g�R sin �L ; : : : (6.76)

Analogously, the TL and BL partners inside the fourplet are always accompanied by
a compositeness factor cos�L:

g�LTLTL � g�L cos2 �L ; g�LtLTL � g�L sin �L cos�L ; : : : (6.77)

The same happens for the partially composite tR and for the right-handed component
of the singlet partner QTR. The corresponding compositeness angle is

tan�R D yR1f

m1

: (6.78)
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Similarly to the light-SM-fermions case, the interactions with the heavy SM
quarks and the top partners receive an additional contribution from the mixing
between the vector resonances and the SM gauge fields. This contribution scales
as Ng2=g N�, where Ng denotes the SM gauge coupling involved in generating the
interaction, and is typically subleading with respect to the direct strong-dynamics
effects.

Main Production and Decay Channels

At a hadronic machine the two main production mechanisms for the vector
resonances are Drell-Yan (DY) processes (mediated by the interactions with the
light SM quarks) and VBF processes (mediated by the couplings with the EW
gauge bosons). As we discussed above, the strength of the interactions with the
light SM fermions scales like 1=g�, thus the DY production cross section is reduced
if the strong-sector coupling is large. On the contrary, the coupling to the SM gauge
bosons usually scales like g�, leading to an enhancement of VBF for large couplings.

To determine the relative importance of the two production channels, however,
we also need to take into account the initial parton luminosities. The parton
luminosity for the DY processes is much larger than the VBF one, since the latter is
suppressed by an additional factor ˛2EW coming from the emission of the virtual EW
gauge bosons. This large suppression makes the VBF channel usually subleading
with respect to DY. This result is valid at the LHC for all the resonances we
considered above. The only exception are the charged components of the SU.2/R
triplet, �Ṙ , whose coupling to the light SM fermions is suppressed by a factor .
In this case the DY and VBF channels have comparable cross section, though both
of them are quite small. Notice that for the singlet resonance �X and for the heavy
gluons the couplings to the SM gauge bosons are highly suppressed and the VBF
channel is totally negligible.

It is important to stress that, although all the couplings to the light SM fermions
scale in the same way, their absolute size can significantly vary depending on the
quantum numbers of the vector resonances. For instance the couplings mediated
by the B gauge boson are smaller with respect to the one mediated by the W by
a factor .g0=g/2 ' 0:3, which implies a one order of magnitude suppression in
the production cross section. The heavy gluon couplings, on the other hand, are
enhanced with respect to the EW ones, so that their production is roughly two orders
of magnitude bigger than for an SU.2/L triplet. The parton luminosities and the
typical size of the cross sections for the various vector resonances can be found in
[34, 35, 38].

We can now discuss the typical decay channels. Due to the sizable coupling,
when kinematically allowed, the vector resonances preferentially decay into pairs of
composite fermions. This is basically true for all vector resonances unless somewhat
extreme corners of the parameter space are considered. Notice that, when the decay
into pairs of composite fermions is allowed, the vector resonances tend to be quite
broad. This is a consequence of the large couplings as well as of the fact that multiple
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decay channels are usually present due to the existence of various top partners
species.14

Below the threshold for the decay into two partners, the direct decays into
SM states usually become dominant. The vector resonances charged under SO.4/,
namely the �L and �R triplets, have large branching ratios into pairs of SM gauge
bosons or a gauge boson and the Higgs. These decays are mediated by the O.g�/
couplings involving the Goldstone bosons. If the top and bottom quarks have a
significant amount of compositeness, another important channel is the direct decay
into third generation quarks. This is true for almost all the vector resonances, the
only exception being the charged �Ṙ resonances, whose couplings to the SM quarks
arise only after EWSB.

Heavy-light decays involving one top partner and one third-generation quark
can also be relevant when kinematically allowed. This typically happens only in a
relatively small mass window, given that, above the m� > 2m threshold the decay
into two top partners usually dominates.

In addition to the mentioned channels, the vector resonances can also decay
directly into light SM fermions. A particularly interesting channel is the one
involving a pair of leptons, which is available for the �L, �0R and �X resonances.
Although these decays usually have only a small branching ratio, they can be
important for collider searches due to the easily detectable final states.

The main decay channels of the vector resonances are summarized in Table 6.3.

Table 6.3 Main decay channels of the composite vector resonances

Gauge Light SM 3rd gen. Heavy-light Top partners

�0L WW, Zh lCl�, uNu tNt, bNb TNt, BNb X5=3X5=3;X2=3X2=3;

.TT ;BB/

�˙

L WZ, Wh l	, uNd tNb BNt, T Nb X5=3X2=3, TB

�0R WW, Zh lCl�, uNu tNt, bNb TNt, BNb X5=3X5=3;X2=3X2=3;

.TT ;BB/

�˙

R WZ, Wh X5=3Nt, X2=3 Nb X5=3T, X2=3B

�X lCl�, uNu tNt, bNb TNt, BNb, QTNt X5=3X5=3;X2=3X2=3;

QT QT; .TT ;BB/

�g uNu tNt, bNb TNt, BNb, QTNt X5=3X5=3;X2=3X2=3;

QT QT; .TT ;BB/

In the column for the decays into light SM fermions, uNu also includes the dNd, sNs and cNc channels,
and similarly uNd also includes the cNs channel. In the “top partners” column the parenthesis
enclosing TT and BB indicate that these channels are always suppressed with respect to X5=3X5=3
and X2=3X2=3 because the T and B resonances are always heavier than the X5=3 and X2=3

14See for instance [39] for a collider study of heavy gluons decaying to top partners.
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Collider Searches

Several decay channels can be exploited to search the vector resonances at hadronic
colliders. At the 8TeV LHC the experimental analyses focused on the direct decays
into SM states. The main final states that have been considered for the charged
resonances are

• heavy SM quarks, �C ! tNb [40, 41],
• leptons, �C ! l	 [42, 43],
• gauge bosons with fully hadronic final state, �C ! WZ ! jj [44, 45],
• gauge bosons with fully leptonic final state, �C ! WZ ! 3l	 [46, 47].

For the neutral states the following searches have been performed

• top quarks, �0 ! tNt [48, 49],
• leptons, �0 ! lCl� [50, 51],
• � leptons, �0 ! �� [52],
• gauge bosons with fully hadronic final state, �0 ! WW ! jj [44],
• gauge bosons with semi-leptonic final state, �0 ! WW ! l	jj [53].

The constraints coming from the 8TeV LHC data have been discussed in [34, 35].
We will briefly summarize them in the following. The searches for resonances
decaying directly into leptons are relevant for the “EW” vector resonances (namely
the �L;R and the �X) for relatively small values of the g� coupling (g� � 1). In the
case of the �L, these searches can exclude resonances with a mass m�L . 2–3TeV.
The bound quickly deteriorates for larger g�L and disappears for g�L & 2–3 due
to the suppressed branching fraction into leptons. In the case of the �R and �X

resonances, the bounds are usually �500GeV weaker than the ones for the �L due
to the smaller production cross section.

Another relevant decay channel is the one into SM gauge bosons, whose
importance increases at larger g�. This channel allows to exclude a �L resonance
with a mass m�L . 1:5–2TeV for g�L . 4–5. This decay channel can also be
relevant for the �R resonances although, similarly to the lepton channel, the bounds
are less stringent (m� . 1–1:5TeV for g� . 2) than for the �L.

Finally, the tNt decay channel can also be used to set exclusions. In the case of
the “EW” vector resonances these bounds are usually weaker than the ones coming
from the channels involving leptons and gauge bosons. The situation is different
for the heavy gluons, which can only decay into colored states. In this case the tNt
channel is the best one to set bounds on m�g .

Notice that, if the decay into a pair of top partners or the heavy-light channel
are kinematically allowed, the branching ratio for the direct decays into SM states
is usually small and the above mentioned searches drastically lose effectiveness.
Although the top partners decay into third-generation quarks and gauge bosons, the
presence of the intermediate fermion resonances in the decay chain significantly
affects the kinematics making the searches for tNt, tNb and bNb final states less efficient.
It has been shown that dedicated search strategies focused on the decays to compos-
ite fermions could significantly improve the sensitivity to these channels [38, 54].
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Chapter 7
EW Precision Tests

The composite Higgs dynamics gives rise to a rich set of new-physics effects that
can be used to probe this scenario through a comparison with the experimental data.
One of the most distinctive phenomena is the presence of composite resonances
around the TeV scale, which can be straightforwardly tested in collider experiments.
A second important signature is the peculiar pattern of distortions of the Higgs
couplings, which constitutes a direct manifestation of the non-linear Nambu—
Goldstone structure. In addition to these features, the composite dynamics gives
also rise to many indirect effects. These noticeably include a set of corrections to
the Electro-Weak (EW) observables that describe the physics of the light Standard
Model (SM) fermions and of the gauge fields. The importance of these observables
comes from the fact that they can be measured in high-precision experiments and
thus can be used to test even tiny corrections coming from a new-physics dynamics.
Obvious examples are the Z-pole observables measured at the LEP experiment
and the properties of the bottom quark easily accessible at b-factories. All these
measurements agree with the SM and have been extensively used to set stringent
constraints on beyond the Standard Model (BSM) scenarios. They constitute the
so-called EW Precision Tests (EWPT) of the SM.

It is important to stress that the corrections to the precision observables ulti-
mately come from exactly the same features that can be tested in direct searches,
namely the composite resonances and the Goldstone structure. Thus they provide
a complementary approach to test the main properties of the composite dynamics.
The virtue of the precision measurements is the fact that, in principle, they can
probe new physics at scales much higher than the actual energy of the experiment.
As we will see in the following, a typical example are the Z-pole LEP data, which
can be sensitive to the presence of composite resonances with masses much above
the TeV scale. This high sensitivity, however, comes with a price. Differently from
a direct discovery, which usually point towards a specific type of new physics, a
deviation in a precision observable can in principle be due to very different sources.
Similar ambiguities are present in the case of no discovery, when the experimental
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data are used to set bounds on the BSM dynamics. As we saw in Chap. 6, direct
searches of new states can probe and constrain new physics in a virtually model-
independent way. Indirect effects, instead, can receive contributions from several
sources including, in specific cases, sizable UV effects, and thus their interpretation
depends much more on the exact details of the new-physics model.

In this chapter we will discuss the main corrections to the precision observables
that arise in composite Higgs scenarios. Our primary aim will be to provide an
overview of the broad class of effects that characterize the composite Higgs models,
we will thus proceed similarly to what we did in the previous chapters and follow
a general effective field theory approach. Interestingly, an important set of the EW
precision observables are mainly determined by the low-energy dynamics of the
composite sector. In these cases the most relevant contributions come from the
lightest composite resonances belonging either to the quark sector (the usual top
partners) or to the gauge sector. These effects can be reliably computed within
an effective approach and thus provide a set of robust predictions which can be
compared with the EWPT.

7.1 The Oblique Parameters

Composite Higgs models are, to a good approximation, “universal” theories of EW
symmetry breaking and thus their corrections to the EW precision observables can
be conveniently encapsulated in the so-called “oblique parameters” defined in [1].
The approach of [1], which we will now briefly summarize, extends the original
prescription by Peskin and Takeuchi [2] to models containing new heavy vector
bosons. Universal theories of EW symmetry breaking are those in which the only
interactions of the leptons and of the light quark fields are of the form

Lint D ‰��.T˛ OW˛
� C Y OB�/‰ ; (7.1)

where T˛ denotes the SU.2/L SM generators and Y is the hypercharge. The QCD
interactions are of course also present for the quarks, but they play no role in the
discussion and can be safely ignored. Only the light quarks and the leptons are
considered in the definition of universal theories because these are the particles
which enter more directly in the EWPT. Deviations from universality, for instance
in the bottom sector, can be systematically taken into account as we will discuss in
Sect. 7.2. Notice that a field redefinition might be needed in specific theories to put
the fermion interactions in the form of Eq. (7.1). We call universal theories those in
which a field basis exists where Eq. (7.1) is satisfied and we consider that basis for
the study of EW precision physics.

The SM, in the limit in which we neglect the Yukawa operators, is the simplest
example of a universal theory. Fermions are coupled by the habitual gauge interac-
tions like in Eq. (7.1), where OW D gW and OB D g0B are the rescaled SU.2/L�U.1/Y
gauge fields. Composite Higgs models are universal theories as well since the light
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quarks and leptons mixings with the composite sector are typically very small and
negligible.1 The only relevant interactions originate from the elementary sector
Lagrangian and are dictated by gauge symmetry. Namely they take once again
the form of Eq. (7.1) but with OW D g0W0 and OB D g0

0B0 where g0, g0
0 and W0,

B0 denote, respectively, the elementary gauge couplings and the elementary gauge
fields. Notice that OW and OB do not coincide with the light SM vector boson mass
eigenstates and are not even proportional to them. In generic composite Higgs
models, such as the ones we studied in the previous chapters, the OW and OB fields are
linear combinations of the vector bosons and of the heavy vector resonance fields.
With a terminology borrowed from extra-dimensional models of EW Symmetry
Breaking (EWSB), OW and OB are sometimes called “holographic” fields.

Since they couple with the light fermions, the holographic fields are the right
objects to discuss EW precision physics. In particular, precision EW processes
involve four-fermion amplitudes and thus they are only affected by new physics
modifications of the holographic fields propagators with respect to the SM pre-
dictions. The oblique parameters are thus defined in terms of the new physics
corrections to the transverse vacuum polarization amplitudes …VV0 where V; V 0 D
f OW˛; OBg, or better in terms of their low-momentum expansion which is a good
approximation since the EW precision processes take place much below the new
physics scale. The oblique parameters that are relevant for the composite Higgs
phenomenology are OS and OT , defined as2

OS D g2
d…W3B

dp2

ˇ̌
ˇ̌
p2D0

; (7.2)

OT D 4

v2
.…W3W3 �…W1W1 /jp2D0 : (7.3)

We stress once again, in view of some confusion that emerges in the literature, that
the usage of the holographic fields OW and OB is compulsory for a proper discussion of
the EWPT and no alternative can be considered. In particular, using the SM vector
bosons mass eigenstate basis to define the oblique parameters makes absolutely no
sense because in this basis the heavy resonance fields also couple with the fermions
and contribute to the EW precision physics. The corrections from heavy vectors
exchange are of exactly the same order as the ones from the modified couplings
with the physical EW bosons and thus they can not be ignored.

In the composite Higgs scenario the corrections to the oblique parameters
come from two main sources. The first one is the intrinsic non-linear dynamics
associated to the Goldstone nature of the Higgs. The non-renormalizable Lagrangian
describing the Higgs field contains distortions of the gauge bosons and Goldstone

1Considerable departures from universality are possible in U.3/3 flavor-symmetric scenario, as we
briefly discussed in Sect. 4.3.1.
2The parameters g and v are defined, following [1], in terms of the …WCW� correlator, namely
1=g2 D …0

WCW�

.p2 D 0/ and v2 D �4…WCW� .p2 D 0/ ' .246GeV/2.
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Fig. 7.1 Constraints on the
oblique EW parameters OS and
OT [3]. The gray ellipses show
the exclusion contours at
68%, 95% and 99:7%
confidence level for
mh D 126GeV. The red lines
schematically show the
contributions that arise in
composite Higgs models as
explained in the main text.
The IR contribution
corresponds to the corrections
due to the non-linear Higgs
dynamics, approximately
given in Eqs. (7.4) and (7.5),
and is obtained by fixing
m� D 3TeV. The plot is
taken from [4]

couplings that induce a modification of the SM contributions to the vacuum
polarization amplitudes. The second class of corrections to OS and OT comes from
the presence of composite vector and fermionic resonances.

The various contributions to the oblique parameters are shown schematically
in Fig. 7.1 together with the current experimental constraints. It can be clearly
seen that, unless a very high compositeness scale f is chosen, a certain amount of
compensation between the different contributions is needed to respect the bounds.
In particular a sizable positive contribution to OT coming from the fermions is usually
essential.

In the following we will analyze in details each class of contributions. For
definiteness, we will focus on the minimal composite Higgs scenarios based on the
SO.5/=SO.4/ symmetry pattern.

7.1.1 IR Corrections

The first class of corrections to the oblique EW parameters is due the non-linear
Higgs dynamics which induces a modification of the Higgs couplings with the EW
gauge bosons. This distortion is present in any composite Higgs scenario and is fully
determined by the symmetry breaking pattern that gives rise to the Goldstones. In
particular the leading logarithmically-enhanced contributions are “universal” and
are completely fixed by the IR dynamics of the theory [5]. For this reason they
can be simply computed in the SO.5/=SO.4/ non-linear �-model that describes the
Higgs and the EW gauge bosons, introduced in Chap. 2. In this case, since no extra
massive vector bosons are present, the holographic fields coincide with the EW
bosons like in the SM.
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Fig. 7.2 Logarithmically divergent one-loop contributions to OS (upper row) and OT (lower row).
Although the oblique parameters are defined in terms of the correlators of the transverse
holographic gauge fields, they can be more efficiently computed in a gauge in which the unphysical
Goldstone modes � inside the Higgs multiplet are retained. In this gauge the OT parameter can be
extracted from the two-point function of the �1;3 fields

The relevant contributions to the OS and OT parameters come from diagrams that
involve one loop of the Higgs doublet fields as shown in Fig. 7.2. Such diagrams are
present in the SM as well and they have been computed in [2]. In this case, however,
the renormalizability of the theory ensures that the logarithmic divergence coming
from the loops of the would-be Goldstone bosons �a is exactly canceled by the
physical Higgs contributions. In a non-renormalizable theory, such as the composite
Higgs scenario, the argument on the finiteness of the oblique parameters is no more
valid. In particular the modifications of the physical Higgs couplings to the EW
bosons imply that the Higgs contribution does not exactly cancel the logarithmic
divergence coming from the � fields. Notice that the interactions involving two �
fields and the EW gauge bosons coincide with the ones of the SM as can be checked
explicitly by expanding the first term in Eq. (2.32) and using the relation between V
and v in Eq. (2.24). This mismatch leads to a contribution to OS and OT given by

�OS D g2

192�2
 log

 
m2
�

m2
H

!
' 1:4 � 10�3  (7.4)

and

� OT D � 3g02

64�2
 log

 
m2
�

m2
H

!
' �3:8 � 10�3  : (7.5)

In the above equations we identified the UV cut-off at which the logarithmic
divergence is regulated with the mass scale of the vector resonances m� (we fixed
m� D 3 TeV to derive the numerical estimates). This is indeed what happens in
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calculable implementations of the composite Higgs scenario, as we will discuss in
Sect. 7.1.3.

It is interesting to notice that the sign of the corrections to the oblique parameters
in Eqs. (7.4) and (7.5) is fixed, namely OS receives a positive contribution while
OT a negative one. In the absence of further corrections, the current experimental
bounds imply a severe constraint on the strong sector scale f . As can be seen from
Fig. 7.1, the constraints come essentially from the shift in the OT parameter, whereas
the correction to OS has a small impact. At the 2� level the bound is  . 0:05,
corresponding to f & 1:1TeV, and is relaxed to  . 0:08 (f & 870GeV) at 3� .

In generic composite Higgs models, as we will see in the following, additional
contributions to the EW parameters are present, which can improve the compatibil-
ity with the data allowing larger values of . The above analysis, however, shows
that a sizable value of  can be viable only at the price of some tuning between
the unavoidable “universal” IR corrections to OS and OT and the extra contributions
coming from the heavy resonances.

To conclude the discussion it is useful to analyze the divergence structure of the
corrections to the oblique parameters. As shown in Eq. (7.2), the OS parameter is
defined as the momentum-derivative of the two-point correlator of the W3

� and B�
holographic fields. In the non-linear �-model description this operator is associated
to a logarithmic degree of divergence at one loop, as can be inferred from the
counting in Eq. (5.6). The result in Eq. (7.4) indeed confirms this expectation.

Let us now consider the OT parameter, which is defined in terms of the zero-
momentum two-point correlators of the elementary Wa

� fields as in Eq. (7.3).

By naively following the divergence counting, we would expect OT to develop a
quadratic divergence at one loop. This expectation, however, is not verified because
of the presence of the SO.3/c custodial invariance, which, as we will show explicitly
in section “The Custodial Symmetries” of the Appendix, forbids corrections to OT .
This symmetry coincides with the diagonal combination of the SU.2/L and SU.2/R
groups inside SO.4/. It is thus automatically respected by the composite dynamics
of the SO.5/=SO.4/ models. Moreover it is left unbroken after EWSB because the
Higgs VEV is invariant under SO.3/c. The only breaking of the custodial symmetry
comes from the mixing of the elementary sector with the composite dynamics. In
particular it is broken by U.1/Y hypercharge gauging, whereas it is preserved by
the SU.2/L gauging. Additional sources of breaking come from the mixing of the
elementary fermions, as we will discuss later on. In order to generate a radiative
correction to OT from loops of Goldstones and gauge bosons it is necessary to insert
at least two powers of the hypercharge coupling g0. As a consequence the one-loop
degree of divergence is reduced from quadratic to logarithmic. This explains the
structure of the result in Eq. (7.5) and the fact that the corrections to OT are weighted
by a g02 factor.
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7.1.2 The Vector Resonances Contribution

A second class of corrections to the EW oblique parameters comes from the
presence of composite vector states.

We start our analysis by considering the OT parameter. As a consequence of the
custodial invariance, OT does not receive corrections at tree level. Indeed, as we
explained before, the only breaking of SO.3/c in the gauge sector is due to the
elementary hypercharge gauge field B�, which can not contribute at tree-level to
the two point correlator of the elementary W� bosons.3 The only contributions
of the vector resonances to the OT parameter are induced at the radiative level.
These contributions however are subleading with respect to the IR effects in
Eq. (7.5) because they lack the log.m2

�=m2
H/ enhancement that characterizes the IR

corrections. The contributions to OT from the vector resonances can thus be usually
neglected [6].

The OS parameter, on the other hand, is not protected and thus can be generated
at tree-level through the exchange of composite vector states. The origin of these
contributions is the mass mixing between the vector resonances and the elementary
gauge bosons. The structure of the corresponding diagrams is shown in Fig. 7.3.
To understand the origin of these corrections it is useful to start from a simple
explicit example: the two-site model introduced in Chap. 5. In this set-up the kinetic
term for the Goldstone fields (see Eq. (5.16)) contains a mass mixing between the
elementary gauge fields, W� and B�, and the composite vectors, Q��. Obviously
before EWSB the mixing is diagonal and links the elementary fields to the vector
states with the same SU.2/L � U.1/Y charges. When the Higgs acquires a VEV,
however, off-diagonal mixing terms are generated which give rise to a contribution
to the two-point function of the W3

� and B� bosons.

The explicit expression of the correction to the OS parameter in the two-site model
is given by

�OS D g20
2Qg2�

 ' m2
W

m2
�

; (7.6)

Fig. 7.3 Tree-level diagrams contributing to the OS parameter through the exchange of a massive
vector resonance. The dashed lines represent insertions of the Higgs VEV

3In computing the oblique parameters at tree-level, the holographic gauge fields must be treated as
external sources and must not be used as virtual fields propagating in the diagrams. In particular the
mass mixing between the W3

� component and B� induced after EWSB does not induce a tree-level

contribution to OT . The holographic bosons can be used as virtual fields only at the radiative level,
as we did in the computation of the IR corrections in Sect. 7.1.1.
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where m� denotes the mass of the composite vector resonances, m2
� ' Qg2� f 2=2 (see

Eq. (5.21)). It is interesting to notice that the tree-level shift in Eq. (7.6) is strictly
positive. When this additional contribution is taken into account together with the
IR corrections in Eqs. (7.4) and (7.5), the overall fit of the EW data worsens and the
bound on  becomes stronger.

The constraints on OS can be also used to derive a robust lower bound on the mass
of the SO.5/ composite vector resonances. By marginalizing over OT , one finds an
absolute upper bound on OS, namely OS . 2:5� 10�3 (see Fig. 7.1). By assuming that
the correction in Eq. (7.6) is the dominant contribution to OS (or at least that no strong
accidental cancellation happens), this constraint can be translated into a lower bound
on the mass of the vector resonances m� & 2TeV.

The result we obtained in the two-site set-up is in agreement with the general
estimate of the tree-level corrections to OS derived in Chap. 3 (see Eq. (3.41))

�OS � m2
W

m2�
; (7.7)

where m� denotes the mass scale of the lightest vector resonances. If a larger set
of resonances is present, additional contributions to OS are generated. For instance,
if some “axial” resonances in the SO.5/=SO.4/ coset are present, the tree-level
correction becomes [7]

�OS D m2
W

 
1

m2
�

C 1

m2
a

!
; (7.8)

where ma denotes the mass of the axial resonances. This result coincides with the
one obtained in the alternative two-site construction presented in Sect. 5.1.5. Notice
that in the minimal constructions m� < ma, thus the correction due to the “axial”
resonances is subleading. Similar considerations apply to possible additional heavy
vector resonances, whose contribution to OS is suppressed by the larger mass and can
be usually neglected with respect to the one coming from the lightest states.

The vector resonances can also induce radiative corrections to OS. As in the case
of the OT parameter, these corrections are subdominant with respect to the IR effects
in Eq. (7.4) and can thus be usually neglected.4

4A more accurate computation of the corrections to OS can be obtained through the use of a disper-
sion relation approach, which allows to partially take into account additional UV contributions [8].
These effects, however, turn out to be numerically small so that the full results is very well
approximated by the sum of the tree-level contributions and of the IR corrections.
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Contributions from “Non-local” Operators

Before concluding the discussion of the vector resonances corrections to the oblique
parameters, we briefly discuss how the above results are modified in the presence
of non-nearest neighbor (or “non-local”) interactions. The role of this class of
interactions in the multi-site constructions has been discussed in Sect. 5.1.6, where
we showed that they can spoil the collective breaking protection and reintroduce a
divergence in the Higgs potential.

For definiteness in the following we will focus on the alternative two-site
construction presented in Sect. 5.1.5, similar results, however, are obtained in the
any other model. The leading “non-local” interaction in this set-up is given in
Eq. (5.64) and its main effect is to introduce an additional contribution f 02 to the
Goldstone decay constant, f , which is modified as

f 2 D f 02 C f 21 f 22
f 21 C f 22

: (7.9)

The modification of the relation between f and the two �-model decay constants f1;2
leads to a change in the tree-level corrections to the OS parameter given in Eq. (7.8),
which now becomes [7, 9]

�OS D m2
W

f 2 � f 02

f 2

 
1

m2
�

C 1

m2
a

!
: (7.10)

From this expression one can see that a positive value of f 02 determines a reduction
of the corrections to OS. The tree-level correction can even become negative if
f 0 > f . For this to happen without leading to negative squared masses for the
vector resonances, one needs to choose f 22 < 0. In these configurations the vector
resonances in the adjoint of SO.4/ are heavier than the axial ones in the coset
SO.5/=SO.4/, as can be seen from the explicit expressions

m2
� D

1

2
g2� f 21 ; m2

a D
1

2
g2�. f 21 C f 22 / ; (7.11)

where g� is the gauge resonances coupling. If the “non-local” operators are not
present, instead, one necessarily gets m� < ma and a positive tree-level correction
to the OS parameter.

7.1.3 The Fermion Contribution

Another important set of corrections to the oblique EW parameters is generated
at the radiative level due to loops of fermionic states. As we explained before and
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summarized in Fig. 7.1, these contributions can be crucial to reconcile the composite
Higgs scenarios with the EW data. This is especially true in the scenarios favored
by Naturalness, which requires a relatively large value for . In this section we
analyze in details the fermion contributions to the oblique parameters and derive
some estimates of their size.

The OS Parameter

We start the analysis by discussing the corrections to the OS parameter. As a
preliminary step it is interesting to determine the degree of divergence associated
to these corrections, which will tell us if they are “calculable” or not in the various
models.

We saw in Sect. 7.1.1 that in the simplest and more general description of
a Goldstone Higgs, the non-linear �-model, the one-loop corrections to OS are
logarithmically divergent. In that case we could only estimate the radiative effects
by retaining the dominant IR running correction which is enhanced with respect
to the UV contributions by the large logarithm. Obviously the minimal non-linear
�-model does not contain a description of the fermionic states, so for the present
discussion we need to consider a more complete implementation of the composite
Higgs scenarios.

One possibility is to consider the multi-site constructions described in Chap. 5.
The divergence structure in these models is considerably different from the one
in the �-model description. Indeed in the multi-site constructions all the effects
related to EWSB are protected by a collective breaking mechanism and the degree of
divergence associated to the corresponding operators is automatically lowered. For
instance, in the 5C 5 two-site model discussed in Sect. 5.1.4, the leading fermionic
contribution to OS corresponds to an effective operator with the structure

cS

.16�2/2f 2
O f

S D
cS

.16�2/2f 2
Tr
�
A�	 U Qm2 U tA�	



� 1

2

cS

16�2

Qm2
Q � Qm2

T

16�2f 2
sin2

�
H

f

�
g0g

0
0W

3
�	B

�	 : (7.12)

As required by the collective-breaking mechanism, this operator contains two
insertions of the Qm mass parameter which are needed to break the global SO.5/R
invariance associated to the composite resonances. Notice that the contribution to
OS vanishes if the masses of the SO.4/ fourplet and singlet components of Q are
equal, QmQ D QmT . In this limit, indeed, the global SO.5/R invariance is restored
and the collective-breaking structure ensures that no EWSB effect can be generated.
According to the counting in Eq. (5.51), the insertions of the Qm parameter lower the
degree of divergence associated to the O f

S operator making it finite at one loop.
Similar considerations apply to the radiative contributions coming from the

vector resonances, which turn out to be calculable at one loop in the multi-site
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models. This feature explains why in the IR contributions in Eqs. (7.4) and (7.5)
we identified the scale at which the logarithmic divergence is regulated with the
mass of the vector resonances.

There is, however, an important subtlety that needs to be mentioned. What we
showed by the previous analysis is that in the two-site model no counterterm needs
to be introduced at one loop for the operator corresponding to the OS parameter. In
the language of Feynman diagrams, this means that the 1PI (one particle irreducible)
contributions to OS are finite. However additional corrections coming from non-1PI
diagrams are in general also present. These diagrams can include some sub-
divergences which must be removed by a renormalization of the parameters of
the model. In other words, the corrections to the OS parameter are finite only when
expressed in terms of renormalized parameters. It is only in this sense that we can
consider OS “calculable” in the multi-site constructions.

A simple example of sub-divergent contributions to OS in the two-site model
comes from the mixing of the OS operator with the two-point function of the vector
resonances. We already saw that this mixing, which is induced by the mass terms
that link the elementary fields to the composite vector states, is responsible for
generating the tree-level corrections to OS. At one loop the correlator of the vector
fields acquires a logarithmic divergence, which leads to a sub-divergence in OS.
The sub-divergence is obviously regulated by the renormalization of the vector
resonances coupling Qg�. Typical diagrams giving rise to this effect are shown in
Fig. 7.4. Notice that they include a loop containing only composite fermions and
not elementary states. The elementary fermions, indeed, are not directly coupled
to the composite vectors and can enter in the loop only through the mass mixing
with the composite fermions. Insertions of the mass mixings introduce additional
fermion propagators making the diagram finite, therefore the elementary fermions
do not contribute to the divergence.

Although the multi-site constructions allow a full determination of the correc-
tions to OS, the actual computation is substantially cumbersome. Moreover the result
crucially depends on the details of the model and can not be discussed in full
generality. Fortunately in many cases a simpler and more general approach can be
used to extract the leading corrections to the oblique parameters. This can be done by
noticing that the fermionic top partner resonances are preferentially lighter than the
vectors for reasons related with the generation of the Higgs mass that we discussed
in the previous chapters. In this situation we can use a simplified description of the
composite Higgs theories that only includes the Higgs dynamics, the elementary

Fig. 7.4 Radiative contribution to the OS parameter generated by a composite fermion loop. The
dashed lines represent insertions of the Higgs VEV
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fields and the light fermionic partners, where the heavy vector states are integrated
out. This minimal description is provided by the CCWZ constructions presented in
Chap. 6, in which the Higgs (and the elementary gauge fields) is described by the
�-model Lagrangian discussed in Sect. 5.1.1, whereas the elementary SM fermions
and their composite partners are described by the most general effective Lagrangian
compatible with the Goldstone symmetry. Obviously, these effective models must
be interpreted as a valid description of the composite Higgs scenarios up to a cut-
off that coincides with the mass of the vector resonances, m�. In the following, we
will use these effective descriptions to quantitatively analyze the corrections to the
oblique parameters.

Given that no collective-breaking structure is present in the effective Lagrangian,
it is easy to understand that the divergence counting in the general CCWZ
constructions coincides with the one of the usual non-linear �-model, which is
encoded in Eq. (5.6). The one loop corrections to the OS parameter are thus expected
to be logarithmically divergent. This results is valid irrespectively of the fields that
circulate in the loop, thus it applies to the gauge contributions (as we explicitly
verified when we computed the IR effects) as well as to the fermion ones.

The leading logarithmically enhanced contributions to OS coming from fermion
loops can be easily computed in the effective theory. As an explicit example we
consider the 5 C 5 model, whose general effective Lagrangian has been presented
in section “The 5 C 5 Model” in Chap. 6. Similar results are however valid in the
other models. The logarithmically enhanced corrections to OS coming from the top
partners are given by [4, 10]

�OS D g2Nc

24�2
.1 � c2L � c2R/  log

 
m2
�

m2
4

!
; (7.13)

where Nc is the number of QCD colors. It is important to notice that this class of
divergent contributions to OS is generated only if composite multiplets in non-trivial
representations of SO.4/ are present in the effective theory. In the 5C 5 model, for
instance, the correction in Eq. (7.13) is due to the light SO.4/ fourplet. This explains
why the argument of the logarithm is written in terms of the fourplet mass m4. On
the other hand, loops containing only SO.4/ singlets can not generate a divergence.
This follows from the fact that the gauge interactions of an SO.4/ singlet with the
SM gauge fields are trivially given by the standard covariant derivative and are not
modified after EWSB (this can be explicitly seen from Eq. (6.4)).

The fact that the correction in Eq. (7.13) is independent of the elemen-
tary/composite mixings yL;R is quite remarkable. In particular it implies that any
light non-trivial SO.4/ multiplet contributes to OS with a sizable shift.5 In models
in which many light fermionic resonances are present, as for instance if all the SM
fermion generations have light partners, the natural size of the corrections to OS can

5Similar contributions to OS are also present in technicolor models [11, 12].
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become very large and some amount of cancellation may be required to pass the
experimental bounds.

The logarithmically enhanced contribution to OS in Eq. (7.13) is sizable if c2LCc2R is
not too close to 1 and is typically much larger than the IR effects in Eq. (7.4). Even
if we assume that only one multiplet of partners is light, as in the minimal two-
site 5 C 5 model, the correction due to fermion loops can be comparable with the
tree-level contribution in Eq. (7.6) if the strong coupling Qg� is large, Qg� & 5. From
an effective theory point of view, the coefficients cL;R are just free parameter, thus
in principle the fermion contribution to OS can have an arbitrary sign. In particular
for c2L C c2R > 1 a sizable negative shift is induced, which could improve the
agreement with the EW precision measurements (see Fig. 7.1). On the other hand,
if no cancellation is present a large positive shift in OS is unavoidable in the presence
of relatively light composite multiplets. For example for m4 ' 700GeV and
m� ' 3TeV, independently of the value of OT , a tight upper bound,  . 0:1, is
obtained for cL D cR D 0, which corresponds to the two-site set-up. The limits on
the compositeness scale for c � cL D cR D 0 and c � cL D cR D 1=2 as a function
of the fourplet mass are shown in Fig. 7.5.

Before concluding this discussion it is interesting to notice that, from the effective
theory point of view, the logarithmically enhanced correction in Eq. (7.13) can be
interpreted as a running of the two dimension-six operators which contribute to OS

OW D i

�
H
� i$D�H

�
.D	W�	/

i ; OB D i

�
H


$
D�H

�
.D	B�	/ ; (7.14)

Fig. 7.5 Upper bound on  in the 5C5model as a function of the fourplet mass m4 for m� D 3TeV
and different values of c 
 cL D cR. The results have been obtained by considering the
contributions to OS given in Eqs. (7.4), (7.6) and (7.13) and by marginalizing on OT . The shaded
regions correspond to the points compatible with the constraints at the 68%, 95% and 99%
confidence level for c D 0. The dashed red curves show how the bounds are modified for c D 1=2
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where H

$
D�H is the derivative H
.D�H/ � .D�H/
H. An essential ingredient

for the generation of the running is the presence of the non-renormalizable gauge
interactions due to the non-linear Higgs dynamics. Interactions of this kind are
contained in the e� term in the covariant derivative of the composite fermions and
in the d-symbol term (see the explicit expressions in section “Explicit CCWZ for
SO.5/=SO.4/” in Appendix in Chap. 2). The logarithmically enhanced contribution
is instead absent in a theory with only renormalizable interactions [4, 13].

The OT Parameter

We can now analyze the corrections to the OT parameter. Similarly to what happens
for OS, the OT parameter is calculable in the multi-site set-ups. The custodial
protection, however, provides an additional reduction of the degree of divergence,
so that, as we will discuss in the following, OT is in many cases calculable even in a
general effective theory independently of a collective-breaking mechanism.

As a preliminary step to exploit the implications of the custodial symmetry, we
need to determine the SO.4/ ' SU.2/L �SU.2/R quantum numbers of the spurions
that control the breaking of SO.3/c induced by the mixing with the elementary
states. For this purpose, a useful choice is to assume that the elementary fields are
only charged under SU.2/L with the usual SM quantum numbers, whereas they
are neutral under SU.2/R. The Higgs, on the other hand, belongs to the .2; 2/
representation. In order to formally restore the SO.4/ invariance we then need to
associate the elementary/composite mixings and the elementary gauge couplings
to a set of spurions. It is easy to see that the spurions must be neutral under the
SU.2/L group, while they have non-trivial transformation properties under SU.2/R.
In Table 7.1 we list the quantum numbers of the spurions for different choices of the
representations of the composite operators involved in the mixings.

Table 7.1 Quantum numbers of the spurions associated to the elementary/composite mixings for
some of the most common SO.4/ ' SU.2/L � SU.2/R representations of the composite operators

Field Composite op. Spurion SO.5/ reps. OT contrib.

qL .2; 1/ yL 2 .1; 1/ 4 –

.2; 2/ yL 2 .1; 2/ 5, 10, 14 4 insertions

tR .1; 1/ yR 2 .1; 1/ 5, 14 –

.1; 2/ yR 2 .1; 2/ 4 4 insertions

.1; 3/ yR 2 .1; 3/ 10 2 insertions

Wa
� .3; 1/ g0 2 .1; 1/ 10 –

B� .1; 3/ g0

0 2 .1; 3/ 10 2 insertions

The fourth column shows the SO.5/ representations that contain each SO.4/ multiplet. In the
fifth column we report the minimal number of insertions needed to generate a contribution to
the OT parameter (if no number is given the corresponding spurion does not break the custodial
invariance). The OT parameter is finite in the effective theory if more than two insertions of the
spurions are needed, whereas it is logarithmically divergent if only two insertions are enough
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As we will show in section “The Custodial Symmetries” in the Appendix, the
OT operator belongs to the .5; 1/ representation of SU.2/L � SU.2/R. Given that
all the spurions are neutral under SU.2/L, a contribution to OT necessarily requires
at least four Higgs insertions: H4 ' .5; 5/ ˚ .3; 3/ ˚ .1; 1/. To build a suitable
operator we also need to insert some powers of the spurions that break the custodial
invariance. Each spurion insertion lowers the degree of divergence by one power. If
two insertions are sufficient the one-loop contribution to OT can be logarithmically
divergent, while more than two insertions ensure that OT is finite. Notice that in the
latter case the fermion contributions to OT is fully finite and does not contain sub-
divergences coming from non-1PI diagrams. Indeed the insertions of the spurions
are associated to the fermionic lines in the diagrams and must necessarily appear in
the loop.

As can be seen from Table 7.1, in many models the minimal number of yL;R

insertions is four, implying that OT is calculable also in the effective theory. It is
interesting to notice that this happens when the elementary fermions are mixed with
strong sector operators in the 5 and 14 representations of SO.5/. As we will see in
Sect. 7.2, in these cases a custodial protection for the bL couplings to the Z boson is
also present, which improves the compatibility of the model with the experimental
data.

We can now derive some estimates of the size of the one-loop corrections to OT
induced by fermion loops. For definiteness, in the following we will focus on the
scenarios in which the OT parameter is finite in the effective theory. In this case a
typical diagram contributing at leading order in the y expansion is shown in Fig. 7.6.
It is straightforward to estimate the leading corrections to OT coming from fermion
loops:

� OT ' Nc

16�2
y4L f 2

m2
 ; (7.15)

where m is the mass of the lightest top partner and yL collectively denotes the ele-
mentary/composite mixing of the third-generation qL doublet. To get a quantitative
estimate we can extract the value of the yL mixing from the top mass. If we assume
that the elementary/composite mixings have comparable sizes, yL ' yR ' y, the
top Yukawa can be estimated as yt ' y2f=m. By using this expression we get the
estimate

� OT ' Nc

16�2
y2t  ' 2 � 10�2 : (7.16)

Fig. 7.6 Schematic structure of the radiative contribution to the OT parameter generated by a
composite fermion loop at leading order in the y expansion
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Notice that this contribution is typically dominant with respect to the IR correction
in Eq. (7.5). Moreover, the sign of the fermion contribution can be positive, thus
compensating the negative shift in Eq. (7.5).

Additional contributions to OT coming from heavier resonances can also be
present. They are however suppressed with respect to the corrections in Eq. (7.15)
by the larger resonance mass.

7.1.4 Explicit Results

In the general analysis presented in the previous sections we found that, in a large
class of composite Higgs models, the corrections to the oblique EW parameters
can be computed in a reliable way from the low-energy dynamics of the theory. In
particular the leading corrections can be extracted within an effective theory which
only includes the SM fields and the lightest fermionic resonances.

Given the importance of the fermionic contributions in making the composite
scenarios compatible with the EW precision data, it is worth analyzing them
carefully in explicit models. In the following we present such analysis in two
classes of minimal models in which the composite resonances belong to the
fundamental representation of SO.5/, namely the 5C5 and 5C1 scenarios described
in Sect. 6.1.1. The explicit results will also allow us to get a solid quantitative
determination of the constraints coming from the EW precision measurements.

The 5 C 5 Model

As a first example we will focus on the 5 C 5 model. This scenario follows the
usual partial compositeness structure, in which the qL and tR fields are realized as
elementary states. The composite operators that mix with the elementary fermions
transform in the fundamental representation of SO.5/, thus the fermionic resonances
belong to the fourplet and singlet representations of SO.4/.

Before discussing the results in the complete model, it is interesting to consider
two simple limits, in which only one SO.4/ multiplet of composite fermions is
present in the low-energy spectrum.

In the case in which only the singlet is light, the fermionic contributions to OS
are finite and are negligible with respect to the tree-level corrections in Eq. (7.6).
The correction to OS is thus positive and is fixed by the mass of the heavy
vector resonances. The OT parameter, on the other hand, receives a sizable positive
contribution from the fermion loops. At leading order in v=f the explicit result reads

� OT D 3

64�2
y4L1m

2
1f
2

.m2
1 C y2R1f
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Fig. 7.7 Corrections to the OT parameter in the 5 C 5 model as a function of the singlet mass m
QT

and the yR1 mixing for  D 0:1. The results correspond to the limit with only a light singlet and
includes the exact fermion one-loop corrections and the IR contribution in Eq. (7.5). The dashed
red lines correspond to the contours with fixed yL1 . The solid blue contours give the regions that
are compatible with the constraints on the oblique parameters at the 68% and 95% confidence
level

In a large part of the parameter space this correction can compensate the negative
shift that comes from the IR contribution in Eq. (7.5). The total shift in OT is shown
in Fig. 7.7 for the reference value  D 0:1 corresponding to f D 780GeV. The
results are shown as a function of the singlet mass mQT ' m2

1 C y2R1f
2 and the yR1

mixing.6 To derive the value of OS the value m� D 3TeV has been used for the vector
resonances mass scale. It can be seen that sizable positive values of OT can easily be
obtained for reasonable values of the singlet mass and of the elementary/composite
mixings.

As a second simplified limit we consider the case in which the resonance
spectrum contains only a light fourplet. In this case the dominant contribution to the
OS parameter comes from the logarithmically enhanced corrections due to the loops
of fermionic resonances. The explicit result coincides with the one in Eq. (7.13) with
cL D cR D 0:

�OS D g2

8�2
 log

 
m2
�

m2
4

!
' 1:6 � 10�2  ; (7.18)

6The top mass, as in all the numerical results we show in this chapter, has been fixed to the value
mt D mMS

t .2TeV/ D 150GeV, which corresponds to a pole mass mpole
t D 173GeV.
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where the numerical estimate has been obtained by setting m4 ' 700GeV and
m� ' 3TeV. If the gauge resonances are heavy m�=f ' g� & 4, the correction in
Eq. (7.18) is comparable to the tree-level one. The sizable positive contribution to OS
implies a quite stringent bound on the compositeness scale,  . 0:1, irrespectively
of the value of OT. An even stronger constraint is obtained if one also considers the
corrections to the OT parameter. The fermion contribution at the leading order in the
y expansion is given by

� OT D � 

32�2
y4L4 f 2

m2
4

: (7.19)

The approximate result shows that the shift in OT tends to be negative. A numerical
computation confirms that this result is valid in a large part of the parameter space
of the model.

The fact that the shift in OT is necessarily negative makes the constraints coming
from the oblique parameters extremely severe. Using the fit in Fig. 7.1 an upper
bound  . 0:02 at the 99% confidence level is obtained, which corresponds to a
lower bound f & 1:7TeV.

As a final case we consider two more complete models that include both a
fourplet and a singlet. In order to reduce the number of free parameters it is useful to
choose a common value for the left and right elementary mixings, yL4 D yL1 D yL

and yR4 D yR1 D yR, and for the coefficients of the d-symbol operators, cL D cR D
c. With this choice the effective Lagrangian (excluding the interactions with the
gauge fields) reproduces the one of the two-site 5C5 model discussed in Sect. 5.2.1.
This means that the Higgs mass is calculable and the result in Eq. (5.79) can be used
to relate it to the masses of the lightest top partners. By imposing this relation and
requiring the correct value for the top mass, we can describe the parameter space of
the model in terms of three free parameters, which we can choose to be the mass of
the T resonance inside the fourplet (mT ' m2

4 C y2L f 2), the qL compositeness angle
�L, defined as

sin �L � yLq
m2
4 C y2L f 2

; (7.20)

and the coefficient of the d-symbol term, c. With the above choice the right mixing
yR is determined up to a twofold ambiguity. In the numerical results (in Figs. 7.8
and 7.9) we show two plots that correspond to the two choices of yR.

For definiteness we focus on two explicit models obtained for particular choices
of c. The first one is the case c D 0, which corresponds to the minimal 5C 5 two-
site model of Sect. 5.2.1. The second case corresponds to the choice c D 1=

p
2

for which the logarithmically enhanced fermion contribution to OS vanishes (see
Eq. (7.13)).

The numerical results for OT for the case c D 0 are shown in Fig. 7.8 for  D
0:1, that roughly corresponds to the maximal value allowed by the bounds on the
OS parameter. In the numerical results the Higgs mass has been fixed to the value



7.1 The Oblique Parameters 289

Fig. 7.8 Corrections to the OT parameter as a function of the mass of the top partners and of the
qL compositeness in the 5 C 5 model with c D 0 for  D 0:1. The two plots correspond to the
two choices of yR that allow to obtain the correct Higgs and top masses at fixed mT and �L. In the
white regions the Higgs and top masses can not be reproduced. The dashed green contours show
the mass (in TeV) of the exotic composite state X5=3. The solid blue contours give the regions that
are compatible with the constraints on the oblique parameters at the 68% and 95% confidence
level, while the dashed red lines show how the bounds are modified if we assume a 25% reduction
in OS. The plots are taken from [4]

Fig. 7.9 Corrections to the OT parameter as a function of the mass of the top partners and of the qL

compositeness in the 5C 5 model with c D 1=
p
2 for  D 0:1. For a description of the symbols

used see caption of Fig. 7.8. The plots are taken from [4]
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mh D 126GeV. As expected from the results discussed in the simplified cases with
only one light multiplet, in the region in which the fourplet is light the corrections
to OT are negative, whereas a light singlet typically implies a positive shift. The fit of
the oblique parameters puts strong bounds on the parameter space of the model. In
the plots the allowed regions for 68% and 95% confidence level are shown.

As can be seen from Fig. 7.8, the oblique parameters can be used to set some
lower bounds on the masses of the resonances coming from the composite fourplet.
At the 95% confidence level, one finds mX2=3 ' mX5=3 & 950GeV for the mass of
the exotic doublet 27=6 and mT ' mB & 1:2TeV for the 21=6 states. If one assumes
a 25% cancellation in the corrections to OS, the bounds are significantly relaxed:
mX2=3 ' mX5=3 & 500GeV and 27=6 and mT ' mB & 1TeV. Notice that these
bounds are competitive with the ones obtained from direct searches (see Chap. 6).

Finally the results for the case c D 1=
p
2 are given in Fig. 7.9 for  D 0:1.

Notice that in this case the main corrections to OS come from the tree-level effects,
thus, in principle, higher values of  could be allowed. In particular for the value
m� D 3TeV used in the plots, the corrections to OS are well below the absolute upper
bound given by the current data. By comparing the corresponding plots one can see
that the results for c D 1=

p
2 significantly differ from the ones for c D 0. In the

case c D 1=
p
2 the corrections to OT tend to be more negative and a much lighter

singlet (and consequently a heavier fourplet) is needed to pass the constraints on the
oblique parameters: mQT . 800GeV and mT & 2TeV.

The Case of a Fully Composite tR

The second scenario we consider, the 5C 1 model, is a modification of the partial
compositeness structure in which only the left-handed doublet qL is elementary,
while the tR is a fully composite state.

The IR contributions to the oblique parameters and the tree-level corrections
to OS due to the gauge resonances do not depend on the assumptions on the
fermion compositeness. The presence of a fourplet of composite fermions induces a
logarithmically enhanced contribution to OS, which is given by

�OS D g2

8�2
.1 � c2L � c2R � c2t / log

 
m2
�

m2
4

!
: (7.21)

The main difference with respect to the 5C 5 case is the presence of the additional
contribution depending on ct, which comes from the d-symbol operator involving
the tR and the composite fourplet (see Eq. (6.19)) This term can lead to a cancellation
of the leading contributions even if no light singlet is present so that cL D cR D 0.

In the following we focus on the simplified cases in which only one light SO.4/
multiplet of massive composite fermions is present. As a first scenario we consider
the case in which only a fourplet is present. The contributions to the OS parameter
are dominated by the tree-level corrections. The fermion contribution to OT can be
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Fig. 7.10 Corrections to the OT parameter in the model with a fully composite tR. On the left panel
the case with only a light singlet is shown as a function of the singlet mass m

QT and of the qL mixing.
On the right panel we plot the results as a function of the qL mixing and of ct in the case with only
a fourplet of mass m4 D 1TeV. Both plots are obtained for  D 0:1. The solid blue contours give
the regions that are compatible with the constraints on the oblique parameters at the 68% and 95%
confidence level, while the dashed red lines in the right plot show how the bounds are modified if
we assume a 25% reduction in OS. The plots are taken from [4]

sizable and is typically positive. At leading order in v=f it reads

� OT D 3

64�2


y2L1f
2

m2
1



y2L1 C 2y2Lt

�
log

�
2m2

1

v2y2Lt

�
� 1

	�
: (7.22)

The total correction to OT is shown in the left panel of Fig. 7.10 for  D 0:1. One
can notice that in this set-up the overall results for the corrections to the oblique
parameters are similar to the ones we found in the case of a partially composite tR.

The second scenario we consider is the one with only a light fourplet. Once we
fix the top mass, the parameter space of the model can be described by three free
parameters: the elementary composite mixing, yL4, the fourplet mass, m4 and the
coefficient of the d-symbol operator ct. The contributions to the OT parameter coming
from fermion loops at leading order in v=f are given by

� OT D � 

32�2
yL4 f 2

m2
4

(
3c2t yL4

�
y2L4 � 4y2Lt

�C y2L4

�
yL4 � 3

p
2ctyLt

�

� 3y2Lt

�
yL4 � 4

p
2ctyLt

� �
log

�
2m2

4

v2y2Lt

�
� 1

	 )
: (7.23)
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The terms related to the d-symbol operator come with accidentally large coeffi-
cients, thus the value of � OT has a strong dependence on ct. In the right panel of
Fig. 7.10 we show the total correction to OT as a function of yL4 and ct for a fixed
value of the fourplet mass, m4 D 1TeV. The parameter space regions with better
agreement with the EW data are the ones with ct � �1, in which the logarithmically
enhanced shift in OS is partially canceled.

7.2 The ZbLbL Coupling

In the previous section we focused our attention on the oblique parameters, OS and
OT, which encode the universal new physics effects that affect in the same way
all the fermion generations. The oblique parameters are enough to capture all the
relevant corrections in the limit of small fermion compositeness. This is usually an
excellent approximation for the light quark generations, but not for the third one,
whose mixing with the strong dynamics needs to be sizable to generate the large
top mass. As a consequence, the observables related to the third quark generation
can receive non-universal shifts that need to be taken into account separately from
the universal effects. Among such observables the coupling of the Z boson to the
bottom field plays a prominent role in constraining the BSM dynamics. The current
experiments, indeed, tested this coupling at the few � 10�3 level. In this section we
will consider in details how the Zbb coupling is modified in the composite Higgs
scenario.

Before starting the actual analysis it is useful to fix our notation. We parametrize
the Z interactions with the bottom quark by the Lagrangian

LZ D g

cos �w
Z�b��

�
.gSM

bL
C ıgbL/PL C .gSM

bR
C ıgbR/PR


b ; (7.24)

where gSM denotes the SM couplings (including the loop corrections), ıg cor-
responds to the corrections due to new physics and PL;R are the left and right
projectors. The weak mixing angle is denoted by �w. The tree-level values for the
SM couplings are

gSM,tree
bL

D �1
2
C 1

3
sin2 �w ; gSM,tree

bR
D 1

3
sin2 �w ; (7.25)

while the one loop corrections (computed in the limit g! 0) are

gSM,loop
bL

D m2
t

16�2v2
; gSM,loop

bR
D 0 : (7.26)
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Fig. 7.11 Constraints on the
new physics corrections to the
Z boson couplings with the
bottom quark. The ellipses
show the exclusion contours
at 68% and 95% confidence
level [14, 15]. The vertical
band shows the expected size
of the corrections to the gbR

coupling in minimal models.
The plot is taken from [4]

The current bounds on the deviations of the Z couplings to the bottom are shown
in Fig. 7.11. The deviation to the left-handed bottom coupling are constrained to be
at the level of 3 � 10�3, while the bounds on the coupling with the right-handed
bottom are one order of magnitude less stringent. Notice however that a strong
correlation exists between the bounds on ıgbL and ıgbR . In many minimal composite
Higgs scenarios the corrections to the gbR coupling are typically small, at most of the
same order of the deviations in gbL . If we impose the constraint jıgbR j . few�10�3,
a negative value for ıgbL , of order �2 � 10�3 is preferred, whereas a positive shift
worsens the fit with respect to the SM. The region favored by the current fit in the
case of small ıgbR is shown in Fig. 7.11 and corresponds to the intersection of the
gray ellipses with the vertical band.

7.2.1 Tree-Level Corrections and the PLR Symmetry

As a first step in our analysis, we discuss the tree-level corrections to the left-
handed bottom coupling. In generic composite Higgs models the main contributions
come from the mixing of the bL with the partners related to the top sector. These
corrections are potentially sizable because the qL doublet must be strongly coupled
to the top partners in order to generate the top mass. The corrections to gbL can be
estimated as [16]

ıgbL �
y2L
g2 
 & y2t

g2 
 ; (7.27)
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Fig. 7.12 Example of
diagrams contributing to the
deviations of the ZbLbL vertex
in the absence of custodial
protection

where the last inequality follows from the absolute lower bound on the left-handed
mixing yL & yt, which is obtained when the tR is fully composite. The schematic
structure of the diagrams that generate the tree-level corrections to the gbL coupling
is shown in Fig. 7.12. By comparing the above estimate with the current data a
stringent upper bound on  is found. This is especially true if the top partners are
relatively light, g D m =f . 2, as expected from naturalness considerations.

It is important to stress that Eq. (7.27) is only a naive estimate. To derive it
we assumed that the corrections to the ZbLbL coupling are generated at the lowest
possible order and no protection mechanism is present. However, as we will discuss
in the following, in many composite Higgs scenarios the corrections to gbL are
naturally suppressed thanks to a custodial protection [17]. This happens when the
composite sector is invariant under an O.4/ symmetry and not just under SO.4/. The
extended symmetry includes, in addition to the usual SO.4/ ' SU.2/L � SU.2/R
group, a discrete parity, PLR, defined as the interchange between the generators of
the SU.2/L and SU.2/R subgroups. The PLR symmetry can be represented by the
O.4/ element PLR D diag.�1;�1;�1; 1/.7 The fourth component of the Higgs
multiplet is invariant under this transformation, therefore the PLR symmetry is not
broken by the Higgs VEV.

We can now analyze the implications of the PLR symmetry on the Z couplings,
extending the discussion of Sect. 3.2.2. Let us consider a fermion  that is an
eigenstate of PLR. It can be shown that its coupling to the Z boson is protected and
does not receive corrections after EWSB. Moreover, as in the SM, the coupling
is completely determined by the electric charge and by the hypercharge (or,
equivalently, by the U.1/X charge) of the fermion  . A proof of this result is
postponed to section “The Custodial Symmetries” in the Appendix. If has definite
quantum numbers under SU.2/L � SU.2/R, the condition to be an eigenstate of PLR

is equivalent to demanding that it has the same charges under SU.2/L and SU.2/R,
namely

TL D TR and T3L D T3R : (7.28)

7The PLR symmetry can be also seen as a transformation of O.5/ corresponding to the element
PLR D diag.�1;�1;�1; 1; 1/. For more details on the PLR symmetry see section “Discrete
Symmetries” in Appendix in Chap. 3.
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Let us now apply these results to the bottom field. To protect the bL coupling
to the Z boson we need to embed the qL doublet in an SO.4/ multiplet is such a
way that Eq. (7.28) is verified for the bottom component. The only way to do this
is to embed qL into the 4 D .2; 2/ representation with U.1/X charge 2=3. With this
choice the bL quantum numbers are

TL D TR D 1=2 and T3L D T3R D �1=2 ; (7.29)

and the bL field is odd under the PLR symmetry.
It is easy to understand that the choice of the qL embedding also determines the tR

quantum numbers under SO.4/�U.1/X . In order to be able to write the top Yukawa
only two charge assignments are possible:

tR 2 12=3 D .1; 1/2=3 or tR 2 62=3 D .1; 3/2=3 ˚ .3; 1/2=3 : (7.30)

To complete our construction we must take into account the fact that the Higgs
is a NGB of an extended SO.5/ symmetry. This implies that the elementary fields
must be embedded in representations of the whole global group and not only of
the unbroken SO.4/ subgroup. In order to obtain a custodial protection for the
bL coupling we need to embed the qL doublet into an SO.5/ representation that
contains, in addition to a .2; 2/ multiplet, another multiplet that can be coupled to
the tR. For the first choice in Eq. (7.30) we can use the 52=3 representation of the
global group that decomposes as

52=3 D .2; 2/2=3 ˚ .1; 1/2=3 : (7.31)

Another simple choice is the 142=3 representation whose decomposition is

142=3 D .2; 2/2=3 ˚ .3; 3/2=3 ˚ .1; 1/2=3 : (7.32)

Explicit examples of models with these two embeddings have been presented in
Chap. 5. For the second embedding of the tR in Eq. (7.30) a minimal choice is the
102=3 multiplet:

102=3 D .2; 2/2=3 ˚ .1; 3/2=3 ˚ .3; 1/2=3 : (7.33)

It is interesting to remark that, when the qL doublet is embedded in the 5 or 14
representation, the PLR invariance arises as an accidental symmetry of the lowest
order interactions in the effective theory. This means that no additional condition
needs to be imposed to obtain the custodial protection [18]. This is not the case
for the representation 10. To respect the PLR symmetry for this embedding it is
necessary to impose suitable conditions on the operators involving the .1; 3/ and
.3; 1/ multiplets.
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Before concluding the discussion, it is important to mention that the PLR

symmetry can only protect the coupling of the Z boson to the fermions at zero
momentum. The effective Lagrangian for the SM fields indeed contains also higher
dimensional interactions that include powers of the momenta, and, in general, these
additional operators are not protected by the custodial symmetry. The physical value
of the couplings coincide with the interactions computed with on-shell states and not
with the “zero momentum” one, so that the higher-dimensional operators can induce
some corrections.

Obviously the additional corrections can come from terms proportional to the Z
mass or to the mass of the fermions. In the case of the bL field the corrections due
to the non-zero bottom mass are clearly negligible, but they can be important if we
are interested in the couplings of the top quark as we will see in Sect. 7.3.

The bL Coupling in the Presence of Custodial Protection

We can now analyze the size of the corrections to the coupling of the bottom quark
with the Z boson. In the cases with PLR symmetry the only relevant corrections are
the ones induced at non-zero momentum. For instance they are due to operators of
the form D�F�	qL�	qL. The estimate of their effects is

ıgbL �
y2L f 2

m2
 

m2
Z

m2
�

' 8 � 10�4 f

m 

�
4�

g�

�2
 ; (7.34)

where m is the mass scale of the composite fields mixed with the bottom. To obtain
the numerical estimate we assumed the relation yL � yR � pytg .

Notice that the embedding of the qL doublet in the representation 52=3 (or
142=3) does not allow to generate a bottom mass. Indeed the SO.5/ multiplet
does not contain any component with the quantum numbers of the bR field.
Therefore to introduce a bottom mass the qL doublet must be also embedded in
an additional multiplet with suitable quantum numbers. This additional embedding
could determine a breaking of the PLR protection for the bL field and generate
corrections to the gbL coupling. For instance this happens if we add an extra multiplet
in the fundamental representation, 5�1=3 (or in the 14�1=3). With this embedding
the bL has charges T3L D �T3R D �1=2 and does not respect the conditions in
Eq. (7.28). The contribution to the ZbLbL vertex coming from the bottom partners
can be estimated as

ıgbL �
.yb

L f /2

m2
B

 ; (7.35)
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where we denoted by yb
L the mixing of the qL to the new multiplets and by mB

the typical mass scale of the new bottom partners. We can relate yb
L to the bottom

Yukawa by assuming that yb
L � yb

R, which implies yb
L � yb

R �
p

ybmB=f . The
estimate in Eq. (7.35) becomes

ıgbL � yb
f

mB
 ' 2 � 10�2 f

mB
 : (7.36)

This correction can easily have a size comparable with the current bounds if the
bottom partners are relatively light. Of course, if we relax the assumption yb

L � yb
R

or if we chose mB � f , the contribution in Eq. (7.35) can be sufficiently suppressed.

The bR Coupling

Let us now consider the corrections to the bR coupling with the Z boson. As for
the tR the quantum numbers of the embedding of the bR field are determined by
the embedding of qL. If we use the 5�1=3 or 14�1=3 multiplets to generate the
bottom mass the bR field must be embedded in the .1; 1/�1=3 representation of
SO.4/�U.1/X . It is easy to see that the bR quantum numbers satisfy the conditions in
Eq. (7.28), thus the gbR coupling is protected by the custodial symmetry. The tree-
level corrections to the bR coupling are then tiny and completely negligible with
respect to the current bounds.

Non-negligible corrections to the gbR coupling can be obtained if we use a
different embedding of qL to give a mass to the bottom quark. Several possibilities
have been discussed in [17]. In the following for simplicity we will focus on the
case in which the correction to the bR coupling are small.

7.2.2 Loop Corrections

We can now consider the one-loop contributions to the ZbLbL vertex. As a first
step we analyze the associated degree of divergence. By using the counting rule
in Eq. (5.51) it is straightforward to check that the ZbLbL operator is naively
associated to a quadratic degree of divergence. In the scenarios in which the bL

is invariant under the PLR custodial symmetry, however, the degree of divergence
is automatically reduced. This is an obvious consequence of the fact that a new
physics contribution to the gbL coupling can be generated only through the insertion
of the couplings that break the PLR symmetry. In the set-up in which the elementary
fermions are coupled to operators in the fundamental representation of SO.5/ the
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main breaking of this symmetry is due to the yL elementary/composite mixing8 and
it is easy to see that at least two insertions of the corresponding spurion (see Chap. 5)
are needed to generate a contribution to the ZbLbL vertex. The degree of divergence
at one loop is therefore reduced to logarithmic.

By an explicit analysis of the operators that correct the gbL coupling we can
get another interesting insight on the nature of the divergent contributions [4]. For
definiteness we will consider the 5C 5 model, whose effective description has been
discussed in section “The 5C 5Model” in Chap. 6. For this analysis it is convenient
to work in the basis of elementary and composite fields. In this basis the physical bSM

L
field corresponds to a linear combination of the elementary bL and of the composite
BL contained inside the fourplet 4. The operators that induce a distortion of the gbL

coupling can be immediately related to the ones that correct the couplings of the Z
boson to the elementary and the composite states by using the transformation

bL ! m4q
m2
4 C y2L4 f 2

bSM
L ; BL ! yL4 fq

m2
4 C y2L4 f 2

bSM
L : (7.37)

By means of a spurion analysis it can be shown that the leading operator
involving the elementary bL field is given by

O D i
�

qLƒ


L�

�ƒLqL

� �
Ut
5Iƒ

˛I
L .ƒ



L/
˛JUJid

i
�

�
C h:c: ; (7.38)

where the ƒ˛I
L spurion corresponds to the mixing yL4 of the qL doublet with

the composite states and is defined analogously to the one we introduced in
Sect. 3.3.1 (see Eq. (3.85)). In particular the index ˛ transforms as a doublet under
an elementary SU.2/L group, while I transforms in the fundamental representation
of SO.5/. This operator contains four powers of yL, thus it corresponds to a finite
one loop contribution. The operator related to the composite resonance, on the
other hand, contains only two spurion insertions and is associated to a logarithmic
divergence:

O D i
�
 4�

� 4
� �

Ut
5Iƒ

˛I
L .ƒ



L/
˛JUJid

i
�

�
C h:c: (7.39)

As can be seen from Eq. (7.37), the contribution to the bSM
L coupling due to the

above operator contains two additional powers of yL coming from the rotation angle
between the composite states and the SM ones. Therefore, also in this case, the
correction to gbL is proportional to the fourth power of yL. However, differently from
the case of the operator in Eq. (7.38) the two additional powers of yL correspond to

8We are neglecting here the contribution from the bottom partners. Due to the small mixings yb
L;R

needed to generate the bottom mass, these states do not play a significant role in the one loop
corrections.
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insertions on the external legs of the diagrams and do not reduce the degree of
divergence.

It is important to stress that we built the operator in Eq. (7.38) by using the
composite resonances  4 in the fourplet representation of SO.4/. This choice is
essential because a contribution to the gbL interaction can only come from multiplets
that contain a resonance with the same quantum numbers of the bL field. For
example, if the composite sector contains only SO.4/ singlets, the analogous of
the operator in Eq. (7.39) does not contribute to the ZbLbL vertex and the leading
corrections to gbL are finite at one loop.

Another way to understand why four powers of yL, instead of two, are needed
to generate a correction to the gbL coupling is the following. Due to the partial
compositeness assumption, each external bL field is necessarily associated to a
power of yL. However, being the bL fields invariant under the PLR symmetry, these
insertions do not lead to a breaking of the custodial protection. As a consequence
at least two additional insertions of yL inside the loop are required to generate a
non-vanishing contribution.

An interesting outcome of the above analysis is the fact that the divergence
in the ZbLbL vertex is not directly due to the elementary states, but instead it is
related to a corresponding divergence in the couplings of the composite fields.
Only one counterterm and one renormalization condition is thus needed to fix both
divergent corrections. For instance, if we choose to express everything in terms of
the renormalized couplings of the composite resonances, the one-loop corrections
to the ZbLbL vertex become completely finite and calculable.

Before concluding the general analysis of the degree of divergence of the ZbLbL

vertex it is interesting to discuss how the above results are modified if we embed our
theory into a two-site model. In this case the collective breaking mechanism ensures
that no counterterm exists for the Z couplings to the bL and BL fields, which are finite
at one loop. Analogously to what happens for the oblique parameters, however, the
non-1PI diagrams contributing to the ZbLbL vertex acquire a logarithmic divergence
related to the running of the strong sector couplings. The radiative corrections
to gbL are thus finite only when expressed in terms of the renormalized strong
sector parameters. Accessing these couplings experimentally, however, would be
a difficult task and the poor knowledge of their value would in any case forbid a
full prediction of the radiative corrections to the ZbLbL vertex. As we did for the
oblique parameters, it is then more convenient to adopt a more practical point of
view and compute only the leading corrections coming from the lightest fermionic
resonances. In this way we encode our ignorance on the values of the strong sector
couplings in the unknown UV contributions.

A Closer Look at the Divergent Contributions

After the general discussion we presented so far, we want to analyze in a more
detailed way the structure of the contributions to the ZbLbL vertex. As we will see, a
large class of diagrams are automatically finite thanks to the presence of a selection



300 7 EW Precision Tests

rule and only a very special subset can generate a logarithmic divergence. As
explained before, we will work in an effective theory in which the vector resonances
are integrated out and only the lightest fermionic resonances are retained.

In Sect. 7.1 we saw that the one-loop contributions to the oblique parameters
come only from the leading terms in the effective �-model Lagrangian. The
situation is different for gbL coupling, whose leading corrections also come from
some dimension-six operators, namely some contact interactions involving four
composite fermions. The schematic structure of four-fermion contact operators is

O4-ferm � 1

f 2
. �� /. �� / : (7.40)

In spite of having dimension six, these operators are not suppressed by powers
of the cut-off, instead their natural coefficient is of order 1=f 2 (see the power-
counting in Eq. (3.23)). Operators of this kind are typically generated by the strong
sector dynamics. For instance they can derive from the exchange of heavy vector
resonances as shown in the diagrams in Fig. 7.13. In these diagrams the suppression
due to the propagator of the heavy boson is exactly compensated by the large
coupling, g� ' m�=f , thus explaining the order 1=f 2 coefficient.

The corrections to the ZbLbL vertex come from two classes of contributions.
The first one is generated from diagrams containing only interactions coming from
the leading terms in the effective Lagrangian. An example of such diagrams are
the “triangle”-type ones schematically shown on the left of Fig. 7.14. The second
class of diagrams are the “bubble”-type ones, shown on the right of Fig. 7.14, that
include a vertex coming from the four-fermion contact operators. As we will see the
structure of the elementary/composite mixings implies the presence of a selection
rule that forbids logarithmically divergent corrections coming from a large class of
diagrams [4]. In particular the only diagrams that lead to a divergent contribution to
gbL are a subset of the “bubble”-type ones, while the others are finite.

The origin of the selection rule can be easily understood by analyzing the
“triangle”-type diagrams in an expansion in yL. In particular, as explained before, we
are interested in the diagrams that contain two yL insertions on the external legs (see
Fig. 7.14). The external bL fields are both mixed with the BL state contained in the
fourplet  4. In order to generate a divergence, the vertices with a Goldstone boson
must also contain a power of the momentum, i.e. they must come from an interaction
of the form @�� L�

� L, where we generically denoted by � the Goldstone field

Fig. 7.13 Structure of the
Feynman diagrams that
generate 4-fermion contact
operators among the
composite fermions through
the exchange of heavy gauge
resonances



7.2 The ZbLbL Coupling 301

Fig. 7.14 Schematic
structure of fermion one-loop
diagrams contributing to the
ZbLbL vertex at leading order
in the yL expansion. Double
lines denote the composite
fields, while single lines
correspond to the elementary
ones. The dashed line denotes
a Goldstone propagator

and by  the composite fermions.9 The chirality structure of the vertex implies
that the composite fermions that enter in the loop are necessarily left-handed. But,
in the leading order Lagrangian, the left-handed composite fermions mix with the
elementary states only through yR. As a consequence, in order to generate a non-
vanishing contribution to gbL some yR or some composite mass insertions are needed
in addition to the four powers of the yL mixing. This lowers the degree of divergence
making the diagrams finite.

The only diagrams that can give rise to a logarithmic divergence are the “bubble”-
type ones. They of course crucially depend on the presence of four-fermion
operators in the effective Lagrangian. Two types of contact interactions can generate
a contribution to gbL . The first type has the form

O4�ferm
L D eL

f 2
�
BL�

�BL
� �
T L��TL

�
; (7.41)

where T denotes any composite state with charge 2=3 contained in the fourplets. For
shortness in Eq. (7.41) we did not specify the color structure, which is not relevant
for the present discussion. By adapting the previous analysis, it is straightforward to
show that the “bubble”-type diagrams with the O4�ferm

L vertex are protected by the
selection rule and are finite. The second type of contact interactions is of the form

O4�ferm
R D eR

f 2
�
BL�

�BL
� �
T R��TR

�
: (7.42)

In this case the selection rule is violated because the TR fields can mix with the qL

doublet through yL. This class of vertices gives rise to a logarithmically divergent
contribution to the ZbLbL vertex.

9In the effective Lagrangian vertices of this kind are generated by the d-symbol terms.
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Estimates

We can now derive some estimates for the contributions to the gbL vertex coming
from fermion loops. The leading contributions are of course the ones related to the
logarithmically divergent diagrams, which can be estimated as

ıgbL '
y2L
16�2

y2L4 f 2

m2
4 C y2L4 f 2

 log

 
m2
�

m2
4

!
; (7.43)

where yL collectively denotes any of the mixing parameters of the qL elemen-
tary doublet. Notice that in the above estimate we explicitly included a factor
y2L4 f 2=.m2

4 C y2L4 f 2/, which corresponds to the mixing between the elementary
bL and the composite BL that appears in the external legs of the logarithmically
divergent diagrams. If we assume that yL ' yR then we can use the relation between
the mixings and the top Yukawa yL � yR � pytg to get the result

ıgbL '
y2t
16�2

 log

 
m2
�

m2
4

!
' 2 � 10�2  ; (7.44)

where for the numerical estimate we set m� ' 3TeV and m4 ' 700GeV.
The presence of a logarithmic divergence implies that the ZbLbL coupling can

also receive an unsuppressed contribution from the UV dynamics. This unknown
UV contribution can be estimated as

ıgbL '
y2L
16�2

y2L4 f 2

m2
4 C y2L4 f 2

 ' y2t
16�2

 ' 6 � 10�3  : (7.45)

To derive this estimate we assumed that the only sources of breaking of the PLR

symmetry are the yL elementary/composite mixings that we included in our effective
Lagrangian. As in the estimate of the logarithmically enhanced terms, we included
a factor y2L4 f 2=.m2

4 C y2L4 f 2/. This takes into account the fact that an unsuppressed
UV contribution can only come from operators analogous to the one in Eq. (7.39)
and thus is always accompanied two powers of the bL compositeness angle.

The UV contribution is typically of the same order of the finite corrections
coming from the diagrams protected by the selection rule, whose estimate reads

ıgbL '
y2L
16�2

y2L f 2

m2
 

 ' y2t
16�2

 ' 6 � 10�3  ; (7.46)

where m is the mass scale of the top partners. Clearly in a generic model only
the logarithmically enhanced contributions, which are parametrically dominant, can
be reliably computed and not the additional finite corrections. An exception to this
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rule is the case in which the mixing angle of the bL with composite fourplets is
negligible, as for instance when only SO.4/ composite singlets are present in the
spectrum of the low energy theory. As we saw, in this case the corrections to gbL are
finite and are dominated by the loops of the lightest resonances, whereas the UV
contributions are suppressed by powers of the cut-off.

Before concluding, it is useful to compare the loop corrections with the tree-level
effects. The corrections in Eqs. (7.43) and (7.46) are usually larger than the tree-level
contribution given in Eq. (7.34). This is especially true if the mass of the resonances
is not too small m & f and the vector resonances coupling is large g� & 5. The
corrections due to the bottom partners, estimated in Eq. (7.35), can in principle be
comparable to the ones coming from the resonances loops if the bottom partners
are light mB � f . These corrections crucially depend on the quantum numbers
of the bottom partners. In minimal scenarios (bottom partners in the fundamental
representation of SO.5/) they are positive and some cancellation is required to pass
the present bounds.

7.2.3 Explicit Results

After the general analysis presented in the previous section, we now analyze the
corrections to the ZbLbL coupling in some explicit models. As we did in the case
of the oblique parameters, in the following we will consider two classes of minimal
models in which the composite resonances belong to the fundamental representation
of SO.5/, namely the 5C 5 and 5C 1 scenarios described in Sect. 6.1.1. In order to
be as model independent as possible we will compute only the leading contributions
calculable within the effective models. Moreover we will work in the limit of
vanishing SM gauge couplings, i.e. we include only the effects due to the Goldstone
fields. This approximation is however known to be a very good one in the SM. As
we explained before, in the classes of models we consider the tree-level corrections
to the ZbLbL vertex come from the bottom partners, whose mass is not required to
be light by Naturalness considerations. For simplicity we will neglect these effects
in our analysis.

Results in the 5 C 5 Model

As a first scenario we consider the 5C5model. An interesting limit of this model is
the case in which only a light composite SO.4/ singlet is present in the spectrum. In
this case the corrections to the gbL coupling are finite and fully calculable within the
effective theory. The absence of fourplets in the effective theory also implies that
additional contributions coming from four-fermion contact interactions and from
the UV dynamics are suppressed by the cut-off scale and can be expected to be
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subleading. At leading order in v=f the shift in gbL is given by

ıgbL D


64�2
y2L1m

2
1f
2

.m2
1 C y2L1f

2/3



m2
1 C 2y2R1 f 2

�
log

�
2.m2

1 C y2R1 f 2/2

v2y2L1y
2
R1f

2

�
� 1

	�
:

(7.47)

It is interesting to compare this result with the one-loop fermion contribution to
OT in the same set-up given in Eq. (7.17). One can notice that a strict relation
exists between the two quantities: � OT D 3 ıgbL [4, 5, 19]. In particular the
positive correction to OT is related to a corresponding positive shift in gbL . For the
typical size of the fermion contribution to OT needed to satisfy the experimental
bounds, 1 � 10�3 < � OT < 2 � 10�3, a moderate contribution to ıgbL is found:
0:33 � 10�3 < ıgbL < 0:66 � 10�3. As we discussed before (see Fig. 7.11), the
experimental measurements disfavor a positive contribution to the ZbLbL coupling.
Thus the scenario with only a light singlet tends to be in worse agreement with the
EW precision data than the SM.

In the more general scenario in which composite fermions in the fourplet
representation of SO.4/ are present, the only contributions that can be reliably
computed in the effective theory are the logarithmically divergent ones due to the
presence of four-fermion contact interactions. As an example we report here the
leading correction to gbL induced by the operator

O D eR

2f 2

�
 

a
4�

� a
4

� �
 

b
4�� 

b
4

�
; (7.48)

where a and b are color indices.10 This operator contains a vertex of the form

eR

f 2

�
B

a
L�

�Ba
L

� �
T

b
R��TR C X

b
2=3R��Xb

2=3R

�
; (7.49)

which gives rise to a logarithmically divergent correction to gbL :

ıg4�ferm
bL

D 3eR

32�2


y2L4 f 2

m2
4 C y2L4 f 2

y2L4 log

 
m2
�

m2
4

!
: (7.50)

Notice that the sign of this contribution crucially depends on the sign of the eR

coefficient. In the effective theory eR is a completely free parameter, thus its sign is
not fixed. From the UV perspective, instead, some constraints on the size and the
sign of the four-fermion interactions could be present.

Apart from the analysis performed in [4], some additional studies of the
corrections to the ZbLbL vertex due to fermion loops in some specific effective
models have been presented in [19–21], these works however do not include the

10Different color structures lead to results that only differ by group theory factors.
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effects related to the four-fermion contact interactions. A computation of the one-
loop corrections to the ZbLbL vertex including the effects due to the SM gauge
couplings is presented in [20].

The Case of a Fully Composite tR

As a second explicit model we consider the 5 C 1 scenario. Analogously to what
happens in the 5C 5 model, in the case in which the low-energy spectrum contains
only a composite SO.4/ singlet the one-loop contributions to ZbLbL are finite and
dominated by the IR contributions. The leading order corrections are given by

ıgbL D
1

64�2


y2L1f
2

m2
1



y2L1 C 2y2Lt

�
log

�
2m2

1

v2y2Lt

�
� 1

	�
: (7.51)

Also in this model the corrections to gbL and the ones to the OT parameters are related
to each other by the relation � OT D 3 ıgbL . The values of OT compatible with the
experimental bounds (0 . OT . 2 � 10�3) imply a moderate positive shift in gbL .
This slightly worsens the agreement with the EW data with respect to the SM.

In the presence of an SO.4/ fourplet in the effective theory, the corrections to the
ZbLbL vertex are divergent. The leading contribution comes from logarithmically
divergent diagrams containing four-fermion contact interactions. As an example we
report the contribution induced by the operator given in Eq. (7.48). In this case the
following contribution arises:

ıgbL D
eR

32�2


y2L4 f 2

m2
4 C y2L4 f 2

yL4

�
yL4 �

p
2ctyLt

�
log

 
m2
�

m2
4

!
: (7.52)

The correction in the above formula depends on the parameter eR that fixes the
coefficient of the four-fermion interaction, but also on the coefficient of the d�-
symbol term ct (see the Lagrangian in Eq. (6.19)). Depending on the size and sign
of the various parameters the correction to gbL can become negative and satisfy the
current bounds.

7.3 The Top Couplings

So far we devoted our attention to a set of observables related to the physics of
the light fermion generations (the oblique EW parameters) and to the bottom quark.
The tight experimental bounds on these observables do not allow for large deviations
from the SM predictions and lead to stringent bounds on the new physics effects.
Another class of observables, in particular the ones related to the top quark, are
instead less constrained by the present data so that sizable deviations from the SM
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are still allowed. Large corrections to the top couplings are naturally predicted in
the scenarios with partial or full compositeness due to the strong mixing of the third
generation with the composite dynamics.

As discussed in Sect. 7.2.1 in the scenarios in which the Z coupling to the bL

are protected by the PLR symmetry, the tL can not have a custodial protection. The
right-handed top component, on the other hand, being necessarily embedded in a
component with quantum numbers T3L D T3R D 0 is protected by a discrete subgroup
PC of the custodial symmetry SO.3/c [17] (see Sect. 4.2.1 for the definition of PC).11

As we explained in Sect. 7.2.1 (see also section “The Custodial Symmetries” in the
Appendix), the custodial protection ensures that at zero momentum no distortion of
the Z coupling can arise. Additional corrections, however, can be generated when
we consider the top and the Z boson on-shell. In particular the corrections due to
the top mass mt are only suppressed by powers of the ratio between mt and the top
partners mass. This means that they can be sizable if the top partners are relatively
light.

The top couplings to the Z boson are described by the following Lagrangian

LZ D g

cos �w
Z�t��

�
.gSM

tL
C ıgtL/PL C .gSM

tR
C ıgtR/PR


t ; (7.53)

where we used a notation similar to the one for the bottom couplings (see
Eq. (7.24)). The tree-level values of the SM couplings are given by

gSM
tL
D 1

2
� 2
3

sin2 �w ; gSM
tR
D �2

3
sin2 �w : (7.54)

The couplings of the left-handed top component with the charged W boson are
related to the Vtb element of the CKM matrix. We will parametrize the new physics
contributions as Vtb D 1 � ıVtb.

The current LHC results already constrain the new physics contribution to Vtb at
the 10% level: Vtb D 1:020˙ 0:046 .meas:/˙ 0:017 .theor:/ [22]. The bounds on
the models coming from this measurement are usually weaker than the ones coming
from the EW precision data and become competitive only in some corners of the
parameter space.

7.3.1 A Relation Between ıgtL and ıVtb

Before discussing the results in some explicit models, we present a general relation
that links the deviations in the ZtLtL vertex to the corrections to Vtb [23–25]. In the
effective Lagrangian describing the Higgs doublet H and the SM fermions only two

11When the tR is embedded in the .1; 1/2=3 representation its coupling to the Z is also protected by
the usual PLR.
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dimension-six operators contribute to the corrections to the tL couplings [16, 24, 26,
27]:

L D i
cHq

f 2
.qL�

�qL/

�
H


$
D�H

�
C i

c0
Hq

f 2
.qL�

i��qL/

�
H
� i$D�H

�
; (7.55)

where H

$
D�H is the derivative H
.D�H/ � .D�H/
H. One combination of the

two operators in Eq. (7.55) controls the corrections to the ZbLbL vertex and is thus
tightly constrained by the experimental data. Given that the precision on the bottom
couplings is much higher than on the top ones, for the present analysis we can
assume that the corrections to gbL vanish, which implies the relation c0

Hq
D �cHq [4,

17, 28]. By imposing this condition we find that the operators in Eq. (7.55) give rise
to the following contributions to the interactions of the top quark with the EW gauge
bosons

L � 2cHqv
2

�
g

cos �w
tLZ��

�tL C g

2

�
tL

�
W1
� � iW2

�

�
��bL C h:c:

�	
: (7.56)

From this equation one can easily see that the leading corrections to the ZtLtL vertex
and to the Vtb matrix element satisfy the relation

ıgtL D �ıVtb : (7.57)

It is important to stress that the above result holds only at order v2=f 2. The
subleading terms, as for instance the ones coming from dimension-eight operators,
can generate independent corrections to gtL and Vtb.

Notice that in the above analysis is valid in a generic BSM scenario and is not
related to the Goldstone boson nature of the Higgs.

7.3.2 Explicit Results

To conclude the discussion about the corrections to the top couplings we report in
the following the explicit results for the leading order corrections to gtL , Vtb and gtR
in the composite models with elementary fermions embedded in the fundamental
representation of SO.5/ [4]. As we did for the oblique parameters and the ZbLbL

vertex, we consider two general CCWZ parametrizations with only one level of
resonances (for the details of the models see Sect. 6.1.1).
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The Case of an Elementary tR

As a first case we consider the scenarios with an elementary tR. The corrections to
the tL couplings at leading order in v=f are given by

ıgtL D �ıVtb D �
4

f 2

m2
4 C y2L4 f 2

"�
m4m1yL1 C yL4yR4yR1f 2

m2
1 C y2R1f

2
�p2cL yL4

�2

C.1 � 2c2L/y
2
L4

#
: (7.58)

The coupling of the tR field with the Z boson receives the following leading
corrections

ıgtR D
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#
: (7.59)

In the above equation the factor in front of the brackets is proportional to the top
mass, hence the correction to the gtR coupling vanishes in the limit of zero mt as a
consequence of the custodial protection.

The above equations can be directly applied to the two-site 5C 5 model. In this
case one finds that, in the regions of the parameter space favored by the EW data,
the corrections to the Vtb matrix element are typically below 10% (�0:12 . ıVtb .
0). The current bounds can already exclude a corner in the parameter space where
jıVtbj & 0:10. The deviations to the gtR coupling, on the other hand, are always quite
small, ıgtR . 0:01.

For completeness we also give the simplified results in the cases in which only
one SO.4/ multiplet is light. In the limit with only a light singlet one gets

ıgtL D �ıVtb D �
4

m2
1y
2
L1f

2

.m2
1 C y2R1f

2/2
; ıgtR D 0 : (7.60)

The above formula shows that the corrections to the tL couplings are suppressed in
the parameter space region with a sizable tR compositeness (yR1f > m1 and yR1 >

yL1).
In the case with only a light fourplet one gets the following results

ıgtL D �ıVtb D �
4

y2L4 f 2

m2
4 C y2L4 f 2

(7.61)
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and

ıgtR D �
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y2L4y
2
R4 f 2
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4 C y2L4 f 2

�
f 2
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4

C f 2

m2
4 C y2L4 f 2

�
: (7.62)

In this case the experimental bounds on Vtb can be directly translated into an upper
bound on the tL compositeness.

The Case of a Fully Composite tR

As a second example we consider the scenario with a fully composite tR. The leading
corrections to the Vtb matrix element and to the top couplings to the Z boson are
given by

ıgtL D �ıVtb D �
4

f 2

m2
4 C y2L4 f 2

"�
m4yL1
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�p2cL yL4
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(7.63)
and
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i
: (7.64)

As in the case with an elementary tR, also in the present setup the initial factor in
the expression for ıgtR vanishes if the top mass is zero.

In the limits with only one light multiplet the above results can be drastically
simplified. If only a light singlet is present in the effective theory one gets

ıgtL D �ıVtb D �
4

y2L1f
2

m2
1

; ıgtR D 0 : (7.65)

In this case the corrections to the ZtLtL coupling can become sizable if the composite
singlet is light.

In the limit with only a light composite fourplet the corrections to the top
couplings become

ıgtL D �ıVtb D �
4

y2L4 f 2

m2
4 C y2L4 f 2

(7.66)

and
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Analogously to the case with an elementary tR, the corrections to the Vtb matrix
element can be used to put an upper bound on the degree of compositeness of the qL

doublet.

Appendix

The Custodial Symmetries

In the analysis of the constraints from EWPT we encountered two “custodial”
symmetries that are of fundamental importance in keeping under control the
corrections to the EW parameters. The first symmetry is the standard custodial group
SO.3/c, which forbids corrections to the OT parameter. The second one is the discrete
PLR invariance which protects the couplings of the Z boson to the SM fields and, in
particular, to the bottom quark. These symmetries are also responsible for a number
of peculiar properties and selection rules on the mass-spectrum and on the couplings
of the composite sector resonances, some of which we encountered in the main text.
The way in which these protections work is explained below.

The SO.3/c Symmetry

We start from assuming an SO.4/ global symmetry of the sector responsible for
EWSB, under which the four real Higgs field components …i form a fourplet or,
equivalently, a .2; 2/ pseudo-real matrix (see Eq. (2.144))

† D 1p
2

�
i�˛…

˛ C �2…
4
�
: (7.68)

Under SO.4/ ' SU.2/L � SU.2/R, † transforms as

†! gL†g
R : (7.69)

In composite Higgs models, this SO.4/ symmetry is part of (or coincides with, in
the minimal coset SO.5/=SO.4/) the unbroken subgroup H of the G=H coset and
it is by assumption an exact symmetry of the composite sector. In the SM, SO.4/ is
instead an accidental symmetry of the Higgs doublet Lagrangian, if considered in
isolation. Both in composite Higgs and in the SM, the SO.4/ symmetry is broken
by the gauge fields and fermions couplings.

The Higgs VEV, h…ii D v ıi4, breaks SO.4/ spontaneously to an SO.3/
subgroup, realizing the symmetry breaking pattern

SO.4/! SO.3/ : (7.70)
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The unbroken SO.3/ is what we call the custodial SO.3/c. Its action can be either
viewed as rotations of the first three

#„
… vector components (with the physical Higgs

in …4 being a scalar) or, equivalently, as the vector subgroup of SU.2/L � SU.2/R,
SU.2/V , defined by equal left and right transformations gL D gR D gV . Indeed the
Higgs VEV in the matrix notation

h†i D vp
2
�2 ; (7.71)

is invariant under the vector transformations.
Both in the SM and in composite Higgs the W˛

� and B� fields weakly gauge
the SU.2/L � U.1/Y subgroup of SO.4/. Actually when dealing with fermions (see
Sect. 2.4.2) an extra unbroken U.1/X group needs to be introduced, but this will play
no role in what follows. The W˛ fields, which fully gauge SU.2/L, preserve SO.4/
provided we assign them to the .3; 1/ representation of the group. The effect of the
hypercharge gauging, which instead breaks SO.4/, will be discussed later on.

The cancellation of the OT parameter immediately follows from this symmetry
structure. Indeed OT is defined (see Eq. (7.3)) in terms of the amputated two-point
W field correlators at zero transferred momentum, and thus it should correspond to
a non-derivative mass-term operator in the effective action. However the only such
term which is compatible with the unbroken SO.3/c (and also happens to respect
the full SO.4/) is12

Lmass D g2v2

8
W˛
�W�

˛ : (7.72)

This term contributes in the same way to …W3W3 and to …W1W1 , thus it does
not contribute to OT , which is proportional to the difference between the two. The
custodial SO.3/c symmetry thus implies OT D 0.

A non-vanishing OT would correspond to the presence, in the effective Lagrangian,
of an operator of the form

v2

8
S˛ˇW˛

�Wˇ;� ; (7.73)

where S is a symmetric traceless (since the trace component does not contribute)
tensor in the .5; 1/ representation of SU.2/L � SU.2/R. In terms of S, OT can be
expressed as OT D S33�S11. In a perfectly invariant theory no parameter exists with
non-trivial SO.4/ transformation properties. A non-vanishing S, and thus in turn
a non-vanishing OT , can only be constructed in terms of spurions, whose presence
signals the explicit breaking of the symmetry.

12The normalization of the operator that follows is chosen to match the SM W mass term.
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Both in the SM and in composite Higgs, explicit SO.4/ breaking emerges from
the hypercharge gauging and from the coupling to fermions. The contributions to OT
from the latter are described extensively in Sect. 7.1.3, here we briefly discuss the
effects of the former breaking. The breaking appears because only one of the three
SU.2/R generators, the third one, is gauged by the hypercharge field B�, i.e. only
one of the three SU.2/R gauge sources WR is a truly dynamical field while the other
components are set to zero. This breaking corresponds to a spurion G0 in the .1; 3/,
which can be inserted in the relation between the WR source and the physical field
B, namely

W˛
R;� D G0˛B� : (7.74)

By two powers of this spurions, plus four powers of the Higgs VEV, which
transforms in the .2; 2/, a non-vanishing S tensor can be constructed and a
contribution to OT is generated. Notice however that the lack of symmetry in the
hypercharge gauging becomes visible only at the loop level because it is only in
the presence of at least one B� field propagator that we can distinguish the case in
which all the three WR fields are dynamical, and the symmetry is preserved, from
the one in which only B� is dynamical and the symmetry is broken. Therefore OT
remains zero at tree-level and Eq. (7.72) gets generalized in the only possible way
compatible with the unbroken electromagnetic U.1/ symmetry, namely

Lmass D v2

8

�
.g W1/2 C .g W2/2 C .g W3 � g0B/2


: (7.75)

The term above, which just coincides with the habitual SM one, gives masses to the
W and to the Z that obey the � D 1 relation.

The PLR Symmetry

We now turn to the PLR symmetry and describe how it can protect the coupling of
the Z boson to fermions. The right starting point, even before introducing the PLR

symmetry itself, is to remind ourselves how the SM gauge fields are introduced
in the theory. The W˛

� fields gauge the SU.2/L group while B� gauges the U.1/Y
hypercharge generator, defined in Sect. 2.4.2 as the sum of t3R in SU.2/R and the X
charge of the U.1/X group, namely

Y D t3R C X : (7.76)

The gauging is conveniently described, as we saw in Sect. 2.3.2, by introducing
external sources associated to all the group generators and identifying part of them
as dynamical fields only at a late stage of the calculation. We thus consider three
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SU.2/L, three SU.2/R and one U.1/X sources, namely

WL;� D W˛
L;�t˛L D g W˛

�t˛L ;

WR;� D W˛
R;�t˛R D g0B�t3R ;

X� D g0B� ; (7.77)

where t˛L;R are the SU.2/L � SU.2/R generators, for which a normalized explicit
representation is provided in Eq. (2.153). The physical value of the source fields, in
terms of three W’s and B, is also reported in the equation above.

The full SU.2/L � SU.2/R � U.1/X global group can be formally promoted to a
local symmetry by regarding the WL, WR and X sources as the gauge fields associate
to the three semi-simple factors. However only the unbroken (or linearly-realized)
subgroup SO.3/c � U.1/X will be relevant in what follows. This subgroup acts on
the sources as

WL;� ! gV 
�
WL;� C i@�

�  g
V ;
WR;� ! gV 

�
WR;� C i@�

�  g
V ;
X� ! X� C @�˛X ; (7.78)

where ˛X denotes the U.1/X transformation parameter. What is peculiar in the
expression above is that W�

L and W�
R , in spite of being two distinct fields, both

transform as if they were gauge connections associated to the SO.3/c local group.
These local symmetry transformations will be very effective in constraining the
fermion couplings.

We now introduce PLR, which is defined in section “Discrete Symmetries” in
Appendix in Chap. 3 as the discrete Z2 transformation that interchanges the SU.2/L
and SU.2/R generators inside SO.4/. Therefore it acts on the gauge sources as

W˛
L;� $ W˛

R;� ; (7.79)

while it leaves X� invariant. On the Higgs fourplet, PLR acts like a parity reflection
of the first three components

P4
LR D diag.�1;�1;�1;C1/ ; (7.80)

therefore the Higgs VEV is even and PLR survives as an unbroken symmetry after
EWSB. In the presence of PLR, the unbroken group SO.3/c � U.1/X is enlarged to
O.3/c �U.1/X .

Let us now analyze the implications of the gauge symmetry transformations
in Eq. (7.78) on the zero-momentum, i.e. non-derivative, couplings of the gauge
fields to the fermions. Since we are interested in the Z boson couplings, we restrict
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our attention to the interactions of the neutral sources W3
L and W3

R to one charge-
eigenstate chiral fermion  . The only interactions allowed by the symmetries are

i ��
�
@� � i t3LW3

L;� � i t3RW3
R;� � i XX�

�
 

C c .W3
L;� �W3

R;�/ �
� : (7.81)

In particular, the terms on the first line are enforced by the covariant derivative
structure of the kinetic term and thus their coefficient is uniquely determined by the
t3L;R and X eigenvalue of  . The one on the second line is instead separately gauge-
invariant given that the shift term in the local transformation of Eq. (7.78) cancels
when we take the difference WL � WR. Therefore it has an arbitrary coefficient
“c”. Not surprisingly, since they are rigidly fixed by the gauge symmetries, the
interactions on the first line reproduce the SM W3 and B vertices, which after the
weak angle rotation reduce to the standard photon and Z boson couplings. This is
immediately verified by substituting the explicit value of the sources in Eq. (7.77),
obtaining

t3LW3
L;� C t3RW3

R;� C XX� D g t3LW3
� C g0.t3R C X/B� ; (7.82)

and noticing that t3R C X D Y as in Eq. (7.76). Since the ones on the first line
match with the SM, the only deviation comes from the term on the second line.
Using the explicit value of the sources and performing the weak angle rotation to
the Z and photon field basis one immediately finds that W3

L � W3
R D g= cos �wZ.

No corrections to the zero-momentum photon coupling are thus generated, as an
obvious consequence of the unbroken electromagnetic gauge group, while the Z
boson interaction can be distorted by an amount

ıg D c ; (7.83)

having adopted the standard convention of normalizing the coupling deviation by
the g= cos�w factor (see Eq. (7.24)).

However W3
L �W3

R is odd under PLR, therefore if  is a PLR eigenstate, no matter
if even or odd, PLR enforces c D 0 and no corrections to the Z couplings can occur.
This result can be easily extended to multiple fermionic fields with definite PLR

parity. In particular the Z boson couplings to a set of eigenstates with the same PLR

parity are necessarily canonical and flavor-diagonal. Flavor-violating Z interactions,
indeed, can only involve eigenstates with opposite parity.

When we consider the SM fermions, in order for the Z couplings to be protected,
PLR must be a symmetry not only of the composite sector (possibly an accidental
one as we saw happening in some cases in the main text), but also of the
partial compositeness mixing of the elementary SM field we are interested in. The
left-handed bottom quark coupling to the Z is particularly relevant, let us thus
discuss under which condition it benefits of the PLR protection. We start from the
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case in which the qL doublet mixes with a fundamental of SO.5/, i.e. with the
.2; 2/ fourplet SO.4/ representation inside the fundamental. The embedding of the
doublet, provided in Eq. (2.116), immediately shows that the Z coupling to bL is
protected in this case, compatibly with what we found in Sects. 3.2.2 and 7.2. Indeed
the bL field only appears in the first and in the second component of the fourplet,
which are both PLR-odd according to Eq. (7.80). Therefore PLR is preserved by the
mixing, provided bL is regarded as an odd field, and the bL coupling is protected.
We also see from the same equation that the tL fields appear instead both in the
third component of the multiplet, which is odd, and in the fourth one which is even.
The tL mixing thus breaks PLR and no protection is present for its coupling with
the Z. This was for the first mixing of the qL, the one with the 52=3 multiplet that
participate in the generation of the top quark mass. The situation is reversed for the
mixing with the 5�1=3, for which the embedding is reported in Eq. (2.127). The tL
coupling is protected in that case, while the bL one is not, given that the bL mixes
with both an even and an odd component. The modifications of the ZbLbL coupling
is thus induced only by the second mixing parameter, �bL , and not by �tL . It should
be rather obvious, at this point, that no protection is instead present when the qL

mixes with operators in the spinorial representation. Indeed the mixing occurs in
this case with a .2; 1/ representation of SO.4/ and the PLR symmetries interchanges
the .2; 1/ and the .1; 2/ components of the spinorial. Since the mixing occurs with
the former and not with the latter, it breaks PLR and no protection is found. This is
in accordance with the results of Sect. 3.2.2.
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